 99264 Jan Naudts
 C*multipliers, crossed product algebras,
and canonical commutation relations.
(49K, latex)
Jul 12, 99

Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers

Abstract. The notion of a multiplier of a group X is generalized to that of a
C*multiplier by allowing it to have values in an arbitrary
C*algebra A. On the other hand, the construction of
the crossed product algebra A x X is generalized
by replacing the action of X in A by a projective action
of X as linear transformations of the space of continuous
functions with compact support in X and with values in A.
The generalizations are done in such a way that a onetoone
correspondence exists between C*multipliers and projective actions.
The results are applicable in mathematical physics. Quantum
spacetime is discussed as an example.
 Files:
99264.src(
99264.comments ,
99264.keywords ,
v5.TEX )