98-451 G. Landi, F. Lizzi, R.J. Szabo
String Geometry and the Noncommutative Torus (122K, LATeX 2e) Jun 16, 98
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. We describe an intimate relationship between the noncommutative geometry associated with a lattice vertex operator algebra A and the noncommutative torus. We show that the tachyon subalgebra of A is naturally isomorphic to a class of twisted modules representing quantum deformations of the algebra of functions on the torus. We construct the corresponding even real spectral triples and determine their Morita equivalence classes using string duality arguments. These constructions yield simple proofs of the O(d,d;Z) Morita equivalences between d-dimensional noncommutative tori and give a natural physical interpretation of them in terms of the target space duality group of toroidally compactified string theory. We classify the automorphisms of the twisted modules and construct the most general gauge theory which is invariant under the automorphism group. We compute bosonic and fermionic actions associated with these gauge theories and show that they are explicitly duality-symmetric. The duality-invariant gauge theory is manifestly covariant but contains highly non-local interactions. We show that it also admits a new sort of particle-antiparticle duality which enables the construction of instanton field configurations in any dimension. The duality non-symmetric on-shell projection of the field theory is shown to coincide with the standard non-abelian Yang-Mills gauge theory minimally coupled to massive Dirac fermions.

Files: 98-451.tex