- 97-405 Barbaroux J.M., Joye A.
- Expectation Values of Observables in Time-Dependent Quantum Mechanics
(58K, LATeX)
Jul 16, 97
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. Let $U(t)$ be the evolution operator of the Schr\"odinger equation generated by
an hamiltonian of the form $H_0(t)+W(t)$ where $H_0(t)$ commutes for all $t$
with a complete set of time independent projectors
$\{P_j\}_{j=1}^{\infty}$.
Consider the observable $A=\sum_j P_j\lambda_j$, where
$\lambda_j\simeq j^{\mu}$, $\mu >0$ for $j$
large. Assuming that the "matrix elements" of $W(t)$ behave as
$\| P_jW(t)P_k\| \simeq 1/|j-k|^p$, $j\neq k$ for $p>0$ large enough, we
prove
estimates on the expectation value $\bra U(t)\varphi | AU(t)\varphi
\ket\equiv \bra A\ket_{\varphi}(t)$ for large times of the type
$ \bra
A\ket_{\varphi}(t)\leq c t^{\delta}$, where $\delta>0$ depends on
$p$ and $\mu$. Typical applications
concern the energy expectation $\bra H_0\ket_{\varphi}(t)$ in case
$H_0(t)\equiv H_0$ or the expectation of the position operator
$\bra x^2\ket_{\varphi}(t)$ on the lattice where $W(t)$ is the discrete
laplacian or a variant of it and
$H_0(t)$ is a time dependent multiplicative potential.
- Files:
97-405.tex