- 96-671 Jiahong Wu
- Quasi-geostrophic type equations with weak initial data
(23K, Latex)
Dec 16, 96
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We study the initial value problem for the quasi-geostrophic type
equations
$$
\frac{\partial \theta}{\partial t}+u\cdot\nabla\theta +
(-\Delta)^{\lambda}\theta=0,\quad \mbox{on}\quad {\Bbb R}^n
\times (0,\infty),
$$
$$
\theta(x,0)=\theta_0(x), \quad x\in {\Bbb R}^n
$$
where $\lambda$ is a fixed parameter and
$u=(u_j)$ is divergence free and
determined from $\theta$ through the Riesz transform
$u_j=\pm {\cal R}_{\pi(j)}\theta$ ($\pi(j)$ being a permutation of
$j$, $j=1,2,\cdots,n)$.
The initial data $\theta_0$ is taken in the Sobolev space of negative
indices $\dot{L}_{r,p}$ (see the text for the definition).
We prove local well-posedness if $\frac{1}{2}<\lambda \le 1$ and
$$
1<p<\infty, \quad \frac{n}{p}\le 2\lambda -1, \quad r=\frac{n}{p
}-(2\lambda-1) (\le 0)
$$
The solution is global if $\theta_0$ is sufficiently small.
- Files:
96-671.tex