95-68 Delshams A., Guti\'errez P.
Effective stability and KAM theory (207K, LaTeX) Feb 15, 95
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. The two main stability results for nearly-integrable Hamiltonian systems are revisited: Nekhoroshev theorem, concerning exponential lower bounds for the stability time (effective stability), and KAM theorem, concerning the preservation of a majority of the nonresonant invariant tori (perpetual stability). To stress the relationship between both theorems, a common approach is given to their proof, consisting of bringing the system to a normal form constructed through the Lie series method. The estimates obtained for the size of the remainder rely on bounds of the associated vectorfields, allowing to get the ``optimal'' stability exponent in Nekhoroshev theorem for quasiconvex systems. On the other hand, a direct and complete proof of the isoenergetic KAM theorem is obtained. Moreover, a modification of the proof leads to the notion of nearly-invariant torus, which constitutes a bridge between KAM and Nekhoroshev theorems.

Files: 95-68.tex