- 95-189 Timo Weidl
- On the Lieb-Thirring constants L_gamma,1 for gamma geq 1/2.
(31K, AMS-LATEX)
Apr 5, 95
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. Let $E_i(H)$ denote the negative eigenvalues of the one-dimensional
Schr\"odinger operator $Hu:=-u^{\prime\prime}-Vu,\ V\geq 0,$
on $L_2({\Bbb R}).$ We prove the inequality
%
\begin{equation}\label{1}
\sum_i|E_i(H)|^\gamma\leq L_{\gamma,1}\int_{\Bbb R} V^{\gamma+1/2}(x)dx,
\end{equation}
%
for the "limit" case $\gamma=1/2.$ This will imply improved estimates
for the best constants $L_{\gamma,1}$ in \eqref{1} as $1/2<\gamma<3/2.
- Files:
95-189.tex