22-44 Oleg Safronov
The rate of accumulation of negative eigenvalues to zero and the absolutely continuous spectrum (419K, pdf) Aug 18, 22
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. For a bounded real-valued function $V$ on ${\Bbb R}^d$, we consider two Schr\"odinger operators $H_+=-\Delta+V$ and $H_-=-\Delta-V$. We prove that if the negative spectra $H_+$ and $H_-$ are discrete and the negative eigenvalues of $H_+$ and $H_-$ tend to zero sufficiently fast, then the absolutely continuous spectra cover the positive half-line $[0,\infty)$.

Files: 22-44.src( 22-44.keywords , DomRemSaf.pdf.mm )