22-24 Rafael de la Llave, Maria Saprykina
Nonconmutative coboundary equations over integrable systems (579K, PDF) May 24, 22
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. We prove an analog of Liv {s}ic theorem for real-analytic families of cocycles over an integrable system with values in a Banach algebra $\G$ or a Lie group. Namely, we consider an integrable dynamical system $f:\M quiv orus^d imes [-1,1]^d o \M$, $f( heta, I)=( heta + I, I)$, and a real-analytic family of cocycles $ta_ps : \M o \G$, indexed by a complex parameter $ps$ in an open ball $

Files: 22-24.src( 22-24.keywords , noncom17.pdf.mm )