20-68 Denis I. Borisov and Pavel Exner
Approximation of point interactions by geometric perturbations in two-dimensional domains (323K, pdf) Aug 3, 20
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. We present a new type of approximation of a second-order elliptic operator in a planar domain with a point interaction. It is of a geometric nature, the approximating family consists of operators with the same symbol and regular coefficients on the domain with a small hole. At the boundary of it Robin condition is imposed with the coefficient which depends on the linear size of a hole. We show that as the hole shrinks to a point and the parameter in the boundary condition is scaled in a suitable way, nonlinear and singular, the indicated family converges in the norm-resolvent sense to the operator with the point interaction. This resolvent convergence is established with respect to several operator norms and order-sharp estimates of the convergence rates are provided.

Files: 20-68.src( 20-68.comments , 20-68.keywords , geomapp200802.pdf.mm )