18-62 Riccardo Adami, Simone Dovetta, Enrico Serra, Paolo Tilli
Dimensional crossover with a continuum of critical exponents for NLS on doubly periodic metric graphs (49K, LaTex2e) May 7, 18
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. We investigate the existence of ground states for the focusing nonlinear Schroedinger equation on a prototypical doubly periodic metric graph. When the nonlinearity power is below 4, ground states exist for every value of the mass, while, for every nonlinearity power between 4 (included) and 6 (excluded), a mark of L^2-criticality arises, as ground states exist if and only if the mass exceeds a threshold value that depends on the power. This phenomenon can be interpreted as a continuous transition from a two-dimensional regime, for which the only critical power is 4, to a one-dimensional behavior, in which criticality corresponds to the power $6$. We show that such a dimensional crossover is rooted in the coexistence of one-dimensional and two-dimensional Sobolev inequalities, leading to a new family of Gagliardo-Nirenberg inequalities that account for this continuum of critical exponents.

Files: 18-62.src( 18-62.keywords , ADST.tex )