16-79 Serena Dipierro, Francesco Maggi and Enrico Valdinoci
Asymptotic expansions of the contact angle in nonlocal capillarity problems (461K, pdf) Sep 30, 16
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. We consider a family of nonlocal capillarity models, where surface tension is modeled by exploiting a family of fractional interaction kernels The fractional Young s law (contact angle condition) predicted by these models coincides, in the limit, with the classical Young s law determined by the Gauss free energy. Here we refine this asymptotics by showing that, for s close to 1, the fractional contact angle is always smaller than its classical counterpart when the relative adhesion coefficient is negative, and larger if it is positive. In addition, we address the asymptotics of the fractional Young s law in the limit case s close to 0 of interaction kernels with heavy tails. Interestingly, for small s, the dependence of the contact angle from the relative adhesion coefficient becomes linear.

Files: 16-79.src( 16-79.keywords , theta_s6.pdf.mm )