- 15-59 Jaroslav Dittrich, Pavel Exner. Christian K hn, Konstantin Pankrashkin
- On eigenvalue asymptotics for strong $\delta$-interactions supported by surfaces with boundaries
(262K, pdf)
Jun 23, 15
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. Let $S\subset\mathbb{R}^3$ be a $C^4$-smooth relatively compact orientable surface with a sufficiently regular boundary.
For $eta\in\RR_+$, let $E_j(eta)$ denote the $j$th negative eigenvalue of the operator associated with the quadratic
form
% -------------- %
\[
H^1(\RR^3)
i u\mapsto \iiint_{\mathbb{R}^3} |
abla u|^2dx -eta \iint_S |u|^2d\sigma,
\]
% -------------- %
where $\sigma$ is the two-dimensional Hausdorff measure on $S$. We show that for each fixed $j$ one has the asymptotic expansion
% -------------- %
\[
E_j(eta)=-\dfrac{eta^2}{4}+\mu^D_j+ o(1) \; ext{ as }\; eta o+\infty\,,
\]
% -------------- %
where $\mu_j^D$ is the $j$th eigenvalue of the operator $-\Delta_S+K-M^2$ on $L^2(S)$, in which $K$ and $M$ are the Gauss and mean curvatures, respectively, and $-\Delta_S$ is the Laplace-Beltrami
operator with the Dirichlet condition at the boundary of $S$. If, in addition, the boundary of $S$ is $C^2$-smooth, then the remainder estimate can be improved to
${\mathcal O}(eta^{-1}\logeta)$.
- Files:
15-59.src(
15-59.comments ,
15-59.keywords ,
deltasurf.pdf.mm )