15-118 J.-B. Bru and W. de Siqueira Pedra
Lieb Robinson Bounds for Multi Commutators and Applications to Response Theory (507K, pdf) Dec 11, 15
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. We generalize to multi commutators the usual Lieb Robinson bounds for commutators. In the spirit of constructive QFT, this is done so as to allow the use of combinatorics of minimally connected graphs (tree expansions) in order to estimate time dependent multi commutators for interacting fermions. Lieb Robinson bounds for multi commutators are effective mathematical tools to handle analytic aspects of the dynamics of quantum particles with interactions which are non vanishing in the whole space and possibly time dependent. To illustrate this, we prove that the bounds for multi commutators of order three yield existence of fundamental solutions for the corresponding non autonomous initial value problems for observables of interacting fermions on lattices. We further show how bounds for multi commutators of order higher than two can be used to study linear and non linear responses of interacting fermions to external perturbations. The results discussed here are also valid for quantum spins on lattices, with obvious modifications. However, we only discuss the fermionic case in detail, in view of applications to microscopic quantum theory of electrical conduction discussed here and because this case is technically more involved.

Files: 15-118.src( 15-118.keywords , LR-Bru-Pedra.pdf.mm )