Below is the ascii version of the abstract for 14-9. The html version should be ready soon.

Pavel Exner, Michal jex
Spectral asymptotics of a strong $\delta'$ interaction supported by a surface
(145K, pdf)

ABSTRACT.  We derive asymptotic expansion for the spectrum of Hamiltonians with a strong attractive $\delta'$ interaction supported by a smooth surface in $\R^3$, either infinite and asymptotically planar, or compact and closed. Its second term is found to be determined by a Schr\"odinger type operator with an effective potential expressed in terms of the interaction support curvatures.