13-14 Michael V. Klibanov and Alexandre Timonov
A globally convergent algorithm for the frequency sounding and Slichter-Langer-Tikhonov problem of electrical prospecting (3662K, pdf) Feb 27, 13
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. The paper presents a globally convergent algorithm for solving coefficient inverse problems. Being rooted in the globally convergent numerical method (SIAM J. Sci. Comput., 31, No.1, 2008, pp. 478-509) for solving multidimensional coefficient inverse problems, it has two distinctive features: the new iterative and refinement procedures. These novelties enhance, sometimes significantly, both the spatial and contrast resolutions. The computational effectiveness of the proposed technique is demonstrated in numerical experiments with two applied coefficient inverse problems: electromagnetic or acoustic frequency sounding and electrical prospecting of layered media. The Slichter-Langer-Tikhonov formulation is exploited as a mathematical model of the latter.

Files: 13-14.src( 13-14.keywords , klibanov_timonov_paper.pdf.mm )