- 11-81 A. Balinsky, W.D. Evans, and R.T. Lewis
- Hardy's Inequality and Curvature
(505K, AMS=TeX)
May 23, 11
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. A Hardy inequality of the form
\[
\int_{\Omega} |
abla f({f{x}})|^p d {f{x}} \ge \left(rac{p-1}{p}
ight)^p \int_{\Omega}
\{1 + a(\delta, \partial \Omega)(\x)\}rac{|f({f{x}})|^p}{\delta({f{x}})^p} d{f{x}},
\]
for all $f \in C_0^{\infty}({\Omega\setminus{\mathcal{R}(\Omega)}}),$ is considered for $p\in (1,\infty)$,
where ${\Omega}$ is a domain in $\mathbb{R}^n$, $n \ge 2$, $\mathcal{R}(\Omega)$ is the extit{ridge} of $\Omega$,
and $\delta({f{x}})$ is the distance from ${f{x}} \in {\Omega} $
to the boundary $ \partial {\Omega}.$ The main emphasis is on
determining the dependance of $a(\delta, \partial {\Omega})$ on the geometric properties
of $\partial {\Omega}.$ A Hardy inequality is also
established for any doubly connected domain $\Omega$ in
$\mathbb{R}^2$ in terms of a uniformization of $\Omega,$ that is,
any conformal univalent map of $\Omega$ onto an annulus. }
- Files:
11-81.src(
11-81.keywords ,
BEL Curvature Paper#2#.pdf.mm )