- 10-2 Uri Kaluzhny, Yoram Last
- Preservation of a.c. Spectrum for Random Decaying Perturbations of Square-Summable High-Order Variation
(254K, PDF)
Jan 6, 10
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. We consider random selfadjoint Jacobi matrices of the form
\[
(\bo{J}_{\omega}u)(n)= a_{n}(\omega)u(n+1)+b_{n}(\omega)u(n)
+a_{n-1}(\omega)u(n-1)
\]
on $\ell^{2}(\NN)$, where $\{{a}_{n}(\omega)>0\}$ and
$\{b_{n}(\omega)\in \RR\}$ are sequences of random variables on a
probability space $(\Omega,dP(\omega))$ such that there exists $q\in \NN$,
such that for any $l\in\NN$,
\[
\beta_{2l}(\omega)= a_{l}(\omega) - a_{l+q}(\omega)
\mbox{ and }
\beta_{2l+1}(\omega)= b_{l}(\omega) - b_{l+q}(\omega)
\]
are independent random variables of zero mean satisfying
\[
\sum_{n\!=\!1}^{\infty}\est{\beta^2_n(\omega )}\!<\!\infty .
\]
Let $\bo{J}_p$ be the deterministic periodic (of period $q$) Jacobi matrix
whose coefficients are the mean values of the corresponding entries in $\bo{J}_\omega$.
We prove that for a.e.\ $\omega$, the a.c.\ spectrum of the operator $\bo{J}_\omega$
equals to and fills the spectrum of $\bo{J}_p$.
If, moreover,
\[
\sum_{n\!=\!1}^{\infty}\est{\beta^4_n(\omega )}\!<\!\infty ,
\]
then for a.e.\ $\omega$, the spectrum of $\bo{J}_{\omega}$ is
purely absolutely continuous on the interior of
the bands that make up the spectrum of $\bo{J}_p$.
- Files:
10-2.src(
10-2.keywords ,
KaLaPresRDV.pdf.mm )