09-99 Maciej J. Capinski, Piotr Zgliczynski
Transition Tori in the Planar Restricted Elliptic Three Body Problem (839K, pdf) Jun 26, 09
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. We consider the elliptic three body problem as a perturbation of the circular problem. We show that for sufficiently small eccentricities of the elliptic problem, and for energies sufficiently close to the energy of the libration point L2, a Cantor set of Lapunov orbits survives the perturbation. The orbits are perturbed to quasi-periodic invariant tori. We show that for a certain family of masses of the primaries, for such tori we have transversal intersections of stable and unstable manifolds, which lead to chaotic dynamics involving diffusion over a short range of energy levels. Some parts of our argument are nonrigorous, but are strongly backed by numerical computations.

Files: 09-99.src( 09-99.keywords , trantori.pdf.mm )