- 09-58 Xue Ping Wang
- Number of eigenvalues for a class of non-selfadjoint Schr dinger operators
(348K, pdf)
Apr 3, 09
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. In this article, we prove the finiteness of the number of eigenvalues for a class of Schr\"odinger operators $H = -\Delta + V(x)$ with a complex-valued potential $V(x)$ on $\bR^n$, $n \ge 2$. If $\Im V$ is sufficiently small, $\Im V \le 0$ and $\Im V \neq 0$, we show that $N(V) = N( \Re V )+ k$, where $k$ is the multiplicity of the zero resonance of the selfadjoint operator $-\Delta + \Re V$ and $N(W)$ the number of eigenvalues of $-\Delta + W$, counted according to their algebraic multiplicity.
- Files:
09-58.src(
09-58.keywords ,
complex-eigenvalues.pdf.mm )