08-113 Victor Dinu, Arne Jensen, and Gheorghe Nenciu
Non-exponential decay laws in perturbation theory of near threshold eigenvalues (380K, pdf) Jun 17, 08
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. We consider a two channel model of the form $$ H_{\varepsilon}=\begin{bmatrix} H_{\rm op} & 0\\ 0 & E_0 \end{bmatrix} +\varepsilon\begin{bmatrix} 0 & W_{12}\\ W_{21}&0 \end{bmatrix} \quad \text{on} \quad \mathcal{H}=\mathcal{H}_{\rm op}\oplus \mathbf{C}. $$ The operator $H_{\rm op}$ is assumed to have the properties of a Schr\"{o}dinger operator in odd dimensions, with a threshold at zero. As the energy parameter $E_0$ is tuned past the threshold, we consider the survival probability $\lvert{\langle{\Psi_0},{e^{-itH_{\varepsilon}}\Psi_0}\rangle}\rvert^2, $ where $\Psi_0$ is the eigenfunction corresponding to eigenvalue $E_0$ for $\varepsilon=0$. We find non-exponential decay laws for $\varepsilon$ small and $E_0$ close to zero, provided that the resolvent of $H_{\rm op}$ is not at least Lipschitz continuous at the threshold zero.

Files: 08-113.src( 08-113.keywords , DJN.pdf.mm )