07-69 Noam Berger, Marek Biskup, Christopher E. Hoffman, Gady Kozma
Anomalous heat-kernel decay for random walk among bounded random conductances (192K, PDF) Mar 24, 07
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. We consider the nearest-neighbor simple random walk on $\Z^d$, $d\ge2$, driven by a field of bounded random conductances $\omega_{xy}\in[0,1]$. The conductance law is i.i.d. subject to the condition that the probability of $\omega_{xy}>0$ exceeds the threshold for bond percolation on $\Z^d$. For environments in which the origin is connected to infinity by bonds with positive conductances, we study the decay of the $2n$-step return probability $P_\omega^{2n}(0,0)$. We prove that $P_\omega^{2n}(0,0)$ is bounded by a random constant times $n^{-d/2}$ in $d=2,3$, while it is $o(n^{-2})$ in $d\ge5$ and $O(n^{-2}\log n)$ in $d=4$. By producing examples with anomalous heat-kernel decay approaching $1/n^2$ we prove that the $o(n^{-2})$ bound in $d\ge5$ is the best possible. We also construct natural $n$-dependent environments that exhibit the extra $\log n$ factor in $d=4$.

Files: 07-69.src( 07-69.keywords , heat-kernel-final.pdf.mm )