 06356 Ulrich Mutze
 The direct midpoint method as a quantum mechanical integrator
(846K, PDF)
Dec 4, 06

Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers

Abstract. A computational implementation of quantum dynamics for an arbitrary
timeindependent Hamilton operator is defined and analyzed. The proposed evolution algorithm for a time step needs three additions of state vectors, three multiplications of state vectors with real numbers, and one application of the square of the Hamilton operator to a state vector.
A trajectory starting from a unitvector remains totally within the unitsphere in Hilbert space if the time step is smaller than 2 divided by the norm of the Hamilton operator.If the time step is larger than this bound, the trajectory grows exponentially over all limits. The method is exemplified with a computational quantum system which models collision and inelastic scattering of two particles. Each of these particles lives in a discrete finite space which is a subset of a line.
The two lines thus associated with the particles cross each other at right angle.
 Files:
06356.src(
06356.keywords ,
mutze20061204.pdf.mm )