- 06-313 Sergei B. Kuksin and Andrey L. Piatnitski
- Khasminskii--Whitham averaging for randomly
perturbed KdV equation
(442K, pdf)
Nov 2, 06
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. We consider the damped-driven KdV equation
$$
\dot u-\nu{u_{xx}}+u_{xxx}-6uu_x=\sqrt\nu\,\eta(t,x),\; x\in S^1,\
\int u\,dx\equiv \int\eta\,dx\equiv0\,,
$$
where $0<\nu\le1$ and the random process $\eta$ is smooth in $x$ and
white in $t$. For any periodic function $u(x)$ let $
I=(I_1,I_2,\dots) $ be the vector, formed by the KdV integrals of
motion,
calculated for the potential $u(x)$. We prove that
if $u(t,x)$ is a solution of the equation above,
then for $0\le t\lesssim\nu^{-1}$ and $\nu\to0$ the vector
$
I(t)=(I_1(u(t,\cdot)),I_2(u(t,\cdot)),\dots)
$
satisfies the (Whitham) averaged equation.
- Files:
06-313.src(
06-313.keywords ,
kuk_pia.pdf.mm )