- 06-23 R. O. de Mello (1), V. O. Rivelles (2)
- The irreducible unitary representations of the extended Poincare group in (1+1) dimensions
(68K, LaTeX 2e, RevTex 4)
Jan 25, 06
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We prove that the extended Poincare group in (1+1) dimensions is non-nilpotent solvable exponential, and therefore that it belongs to type I. We determine its first and second cohomology groups in order to work out a classification of the two-dimensional relativistic elementary systems. Moreover, all irreducible unitary representations of the extended Poincare group are constructed by the orbit method. The most physically interesting class of irreducible representations corresponds to the anomaly-free relativistic particle in (1+1) dimensions, which cannot be fully quantized. However, we show that the corresponding coadjoint orbit of the extended Poincare group determines a covariant maximal polynomial quantization by unbounded operators, which is enough to ensure that the associated quantum dynamical problem can be consistently solved, thus providing a physical interpretation for this particular class of representations.
- Files:
06-23.src(
06-23.comments ,
06-23.keywords ,
orbrep.tex )