 0618 Fr d ric Serier (LMJL)
 Inverse spectral problem for singular AKNS operator on [0,1].
(403K, Latex)
Jan 23, 06

Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers

Abstract. We consider an inverse spectral problem for a class of singular AKNS operators $H_a, a\in\N$ with an explicit singularity. We construct for each $a\in\N$, a standard map $\lambda^a\times\kappa^a$ with spectral data $\lambda^a$ and some norming constant $\kappa^a$. For $a=0$, $\lambda^a\times\kappa^a$ was known to be a local coordinate system on $\lr\times\lr$. Using adapted transformation operators, we extend this result to any nonnegative integer $a$, give a description of isospectral sets and we obtain a BorgLevinson type theorem.
 Files:
0618.src(
0618.comments ,
0618.keywords ,
AKNS_base.pdf.mm )