05-348 Nandor Simanyi
The Boltzmann-Sinai Ergodic Hypothesis in Full Generality (Without Exceptional Models) (420K, PDF) Oct 2, 05
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. We consider the system of $N$ ($\ge2$) elastically colliding hard balls of masses $m_1,\dots,m_N$ and radius $r$ on the flat unit torus $\Bbb T^\nu$, $\nu\ge2$. We prove the so called Boltzmann-Sinai Ergodic Hypothesis, i. e. the full hyperbolicity and ergodicity of such systems for every selection $(m_1,\dots,m_N;r)$ of the external geometric parameters, without exceptional values.

Files: 05-348.src( 05-348.keywords , bol-sin.pdf.mm )