 05196 Jani Lukkarinen, Herbert Spohn
 Kinetic Limit for Wave Propagation in a Random Medium
(388K, LaTeX 2e with 3 EPS figures)
May 31, 05

Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers

Abstract. We study crystal dynamics in the harmonic approximation. The atomic masses are weakly disordered, in the sense that their deviation from uniformity is of order epsilon^(1/2). The dispersion relation is assumed to be a Morse function and to suppress crossed recollisions. We then prove that in the limit epsilon to 0 the disorder averaged Wigner function on the kinetic scale, time and space of order epsilon^(1), is governed by a linear Boltzmann equation.
 Files:
05196.src(
05196.keywords ,
rmasses.tex ,
Gbpath.eps ,
GrSimple.eps ,
graphex.eps )