- 05-104 Christian Hainzl, Mathieu Lewin, and Christof Sparber
- Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation
(43K, AMS-teX)
Mar 14, 05
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We consider a generalized Dirac-Fock type evolution equation deduced from no-photon Quantum Electrodynamics, which describes the self-consistent time-evolution of relativistic electrons, the observable ones as well as those filling up the Dirac sea. This equation has been originally introduced by Dirac in 1934 in a simplified form. Since we work in a Hartree-Fock type approximation, the elements describing the physical state of the electrons are infinite rank projectors. Using the Bogoliubov-Dirac-Fock formalism, introduced by Chaix-Iracane (J. Phys. B. 22, 3791--3814, 1989), and recently established by Hainzl-Lewin-Sere, we prove the existence of global-in-time solutions of the considered evolution equation.
- Files:
05-104.src(
05-104.comments ,
05-104.keywords ,
timebdf.tex )