04-386 Barry Simon
Aizenman's Theorem for Orthogonal Polynomials on the Unit Circle (278K, pdf) Nov 17, 04
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. For suitable classes of random Verblunsky coefficients, including independent, identically distributed, rotationally invariant ones, we prove that if \[ \mathbb{E} \biggl( \int\frac{d\theta}{2\pi} \biggl|\biggl( \frac{\mathcal{C} + e^{i\theta}}{\mathcal{C} -e^{i\theta}} \biggr)_{k\ell}\biggr|^p \biggr) \leq C_1 e^{-\kappa_1 |k-\ell|} \] for some $\kappa_1 >0$ and $p<1$, then for suitable $C_2$ and $\kappa_2 >0$, \[ \mathbb{E} \bigl( \sup_n |(\mathcal{C}^n)_{k\ell}|\bigr) \leq C_2 e^{-\kappa_2 |k-\ell|} \] Here $\mathcal{C}$ is the CMV matrix.

Files: 04-386.src( 04-386.comments , 04-386.keywords , bsimon297.pdf.mm )