- 04-386 Barry Simon
- Aizenman's Theorem for Orthogonal Polynomials on the Unit Circle
(278K, pdf)
Nov 17, 04
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. For suitable classes of random Verblunsky coefficients, including
independent, identically distributed, rotationally invariant ones, we prove that if
\[
\mathbb{E} \biggl( \int\frac{d\theta}{2\pi} \biggl|\biggl( \frac{\mathcal{C} + e^{i\theta}}{\mathcal{C} -e^{i\theta}}
\biggr)_{k\ell}\biggr|^p \biggr) \leq C_1 e^{-\kappa_1 |k-\ell|}
\]
for some $\kappa_1 >0$ and $p<1$, then for suitable $C_2$ and $\kappa_2 >0$,
\[
\mathbb{E} \bigl( \sup_n |(\mathcal{C}^n)_{k\ell}|\bigr) \leq C_2
e^{-\kappa_2 |k-\ell|}
\]
Here $\mathcal{C}$ is the CMV matrix.
- Files:
04-386.src(
04-386.comments ,
04-386.keywords ,
bsimon297.pdf.mm )