04-327 Marco Lenci
Typicality of recurrence for Lorentz gases (110K, LaTex 2e with 5 eps figures) Oct 17, 04
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. It is a safe conjecture that most (not necessarily periodic) two-dimensional Lorentz gases with finite horizon are recurrent. Here we formalize this conjecture by means of a stochastic ensemble of Lorentz gases, in which i.i.d. random scatterers are placed in each cell of a co-compact lattice in the plane. We prove that the typical Lorentz gas, in the sense of Baire, is recurrent, and give results in the direction of showing that recurrence is an almost sure property (including a zero-one law that holds in every dimension). A few toy models illustrate the extent of these results.

Files: 04-327.src( 04-327.comments , 04-327.keywords , typ.tex , ftyp1.eps , ftyp2.eps , ftyp3.eps , ftyp4.eps , ftyp5.eps )