04-304 Barry Simon, Andrej Zlatos
Higher-Order Szego Theorems With Two Singular Points (42K, LaTeX 2e) Sep 23, 04
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. We consider probability measures, $d\mu=w(\theta) \f{d\theta}{2\pi} +d\mu_\s$, on the unit circle, $\partial\bbD$, with Verblunsky coefficients, $\{\alpha_j\}_{j=0}^\infty$. We prove for $\theta_1\neq\theta_2$ in $[0,2\pi)$ and $(\delta\beta)_j=\beta_{j+1}$ that \[ \int [1-\cos(\theta-\theta_1)][1-\cos(\theta-\theta_2)] \log w(\theta) \, \f{d\theta}{2\pi} >-\infty \] if and only if \[ \sum_{j=0}^\infty \, \bigl|\bigl\{(\delta -e^{-i\theta_2}) (\delta -e^{-i\theta_1}) \alpha\bigr\}_j\bigr|^2 +\abs{\alpha_j}^4 <\infty \] We also prove that \[ \int (1-\cos\theta)^2 \log w(\theta)\, \f{d\theta}{2\pi} >-\infty \] if and only if \[ \sum_{j=0}^\infty \abs{\alpha_{j+2}-2\alpha_{j+1} +\alpha_j}^2 + \abs{\alpha_j}^6 <\infty \]

Files: 04-304.src( 04-304.keywords , sz_2004.TEX )