- 04-290 Brian C. Hall and Jeffrey J. Mitchell
- The Segal-Bargmann transform for noncompact symmetric spaces of the
complex type
(507K, pdf)
Sep 18, 04
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. We consider the generalized Segal-Bargmann transform, defined in terms of the heat operator, for a noncompact symmetric space of the complex type. For radial functions, we show that the Segal-Bargmann transform is a unitary map onto a certain L^2 space of meromorphic functions. For general functions, we give an inversion formula for the Segal-Bargmann transform, involving integration against an "unwrapped" version of the heat kernel for the dual compact symmetric space. Both results involve delicate cancellations of singularities.
- Files:
04-290.src(
hall_mitchell.pdf.mm ,
04-290.keywords.mm )