03-76 Mihai Stoiciu
An estimate for the number of bound states of the Schrodinger operator in two dimensions (26K, AMSTeX) Feb 27, 03
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. For the Schrodinger operator $-\Delta + V$ on $\R^2$ let $N(V)$ be the number of bound states. One obtains the following estimate: $$ N(V) \leq 1 + \int_{\R^2}\int_{\R^2} |V(x)| |V(y)| |C_1 \ln |x-y| + C_2|^2 dxdy $$ where $C_1 = -\frac{1}{2\pi}$ and $C_2 = \frac{\ln 2 - \gamma}{2 \pi}$ ($\gamma$ is the Euler constant). This estimate holds for all potentials for which the previous integral is finite.

Files: 03-76.src( 03-76.comments , 03-76.keywords , EstBSS2dim.TEX )