- 03-165 Martin Hairer
- Ergodicity of Stochastic Differential Equations Driven by Fractional Brownian Motion
(450K, PDF)
Apr 10, 03
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. We study the ergodic properties of finite-dimensional systems of SDEs driven by
non-degenerate additive fractional Brownian motion with
arbitrary Hurst parameter $H\in(0,1)$. A general framework is constructed to make
precise the notions of ``invariant measure'' and ``stationary state'' for such a system.
We then prove under rather weak dissipativity conditions that such
an SDE possesses a unique stationary solution and that the convergence
rate of an arbitrary solution towards the stationary one is (at least) algebraic. A lower bound on the
exponent is also given.
- Files:
03-165.src(
03-165.keywords ,
fbm.pdf.mm )