02-468 Massimiliano Berti, Philippe Bolle
Periodic solutions of nonlinear wave equations with general nonlinearities (565K, PS) Nov 18, 02
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. We prove the existence of small amplitude periodic solutions, with strongly irrational frequency $ \om $ close to one, for completely resonant nonlinear wave equations. We provide multiplicity results for both monotone and nonmonotone nonlinearities. For $ \om $ close to one we prove the existence of a large number $ N_\om $ of $ 2 \pi \slash \om $-periodic in time solutions $ u_1, \ldots, u_n, \ldots, u_N $: $ N_\om \to + \infty $ as $ \om \to 1 $. The minimal period of the $n$-th solution $u_n $ is proved to be $2 \pi \slash n \om $. The proofs are based on a Lyapunov-Schmidt reduction and variational arguments.

Files: 02-468.src( desc , 02-468.ps )