- 02-366 Vivaldi F.
- Self-interacting polynomials
(267K, Postscript)
Sep 6, 02
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We introduce a class of dynamical systems of algebraic origin,
consisting of self-interacting irreducible polynomials over a field.
A polynomial $f$ is made to act on a polynomial $g$ by mapping the
roots of the latter. This action identifies a new polynomial $h$,
as the minimal polynomial of the displaced roots.
By allowing several polynomials to act on one another, we obtain
a self-interacting system with a rich dynamics and strong collective
features, which affords a fresh viewpoint on some algebraic dynamical
constructs.
We identify the basic dynamical invariants and
begin the study of periodic behaviour, organizing the
polynomials into an oriented graph.
- Files:
02-366.src(
desc ,
02-366.ps )