- 02-296 Qing-Hui LIU, Zhi-Ying WEN
- Hausdorff dimension of spectrum of one-dimensional Schr\"odinger operator with Sturmian potentials
(354K, Postscript)
Jul 7, 02
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. Let $\beta\in(0,1)$ be an irrational, and $[a_1,a_2,\cdots]$ the
continued fraction expansion of $\beta$. Let $H_\beta$ be the
one-dimensional Schr\"odinger operator with Sturmian potentials.
We prove that if the potential strength $V>20$, then the Hausdorff
dimension of the spectrum $\sigma(H_\beta)$ is strictly great than
zero for any irrational $\beta$, and is strictly less than $1$ if
and only if $\liminf\limits_{k\rightarrow\infty}(a_1 a_2 \cdots
a_k)^{1/k}<\infty$.
- Files:
02-296.src(
02-296.comments ,
02-296.keywords ,
LW01-4.ps )