- 01-456 Dirk Hundertmark, Barry Simon
- Lieb-Thirring Inequalities for Jacobi Matrices
(55K, LaTeX 2e)
Dec 6, 01
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. For a Jacobi matrix J on l^2(N_0) with
Ju(n)=a_{n-1} u(n-1) + b_n u(n) + a_n u(n+1)$, we prove that
\sum_{\abs{E}>2} (E^2 -4)^{1/2}
<=
\sum_n \abs{b_n} + 4\sum_n \abs{a_n -1}.
We also prove bounds on higher moments and some related results in
higher dimension.
- Files:
01-456.src(
01-456.keywords ,
lti_final.TEX )