 01386 Marco Lenci
 Semidispersing billiards with an infinite cusp
(187K, LaTeX 2e with 19 ps figures)
Oct 18, 01

Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers

Abstract. Let $f: [0, +\infty) \longrightarrow (0, +\infty)$ be a sufficiently smooth convex function, vanishing at infinity. Consider the planar domain $Q$ delimited by the positive $x$semiaxis, the positive $y$semiaxis, and the graph of $f$.
Under certain conditions on $f$, we prove that the billiard flow in $Q$ has a hyperbolic structure and, for some examples, that it is also ergodic. This is done using the cross section corresponding to collisions with the dispersing part of the boundary. The relevant invariant measure for this Poincar\'e section is infinite, whence the need to surpass the existing results, designed for finitemeasure dynamical systems.
 Files:
01386.src(
01386.comments ,
01386.keywords ,
cusp.tar.gz.mm )