- 01-320 Anton Bovier, Milos Zahradnik
- Cluster Expansions and Pirogov Sinai Theory
for Long Range Spin Systems
(420K, postscript file)
Sep 5, 01
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We investigate the low temperature phases of lattice spin systems with interactions of Kac type, that is interactions that are
weak but long range in such a way that the total interaction of one
spin with all the others is of order unity. In particular we develop a systematic approach to convergent low temperature expansions in situations where interactions are weak but long range. This leads to a reformulation of the model in in terms of a generalized abstract Pirogov--Sinai model, that is a representation in terms of
contours interacting through cluster fields. The main point
of our approach is that all quantities in the contour representation
satisfy estimates that are uniform in the range of the interaction and
depend only on the overall interaction strength. The extension of the
Pirogov--Sinai theory to such models developed in [Z3, see the next
contribution to the archive] allows then the investigation of the low-temperature phase diagram of these models.
- Files:
01-320.src(
01-320.keywords ,
kps.ps )