01-194 Andreas U. Schmidt
Infinite Infrared Regularization and a State Space for the Heisenberg Algebra (72K, AMS-TeX) May 28, 01
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. We present a method for the construction of a Krein space completion for spaces of test functions, equipped with an indefinite inner product induced by a kernel which is more singular than a distribution of finite order. This generalizes a regularization method for infrared singularities in quantum field theory, introduced by G. Morchio and F. Strocchi, to the case of singularites of infinite order. We give conditions for the possibility of this procedure in terms of local differential operators and the Gelfand-Shilov test function spaces, as well as an abstract sufficient condition. As a model case we construct a maximally positive definite state space for the Heisenberg algebra in the presence of an infinite infrared singularity.

Files: 01-194.src( 01-194.comments , 01-194.keywords , ir_out.tex )