- 00-405 A.A. Balinsky, W.D. Evans and Roger T. Lewis
- On the number of negative eigenvalues of Schr\"{o}dinger
operators with an Aharonov-Bohm magnetic field
(167K, "Postscript")
Oct 17, 00
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. It is proved that for $V_+ = \max(V,0)$ in the subspace
$ L^1 ( \mathbb{R}^+ , \ L^{\infty}(\mathbb{S}^1), \ rdr)$
of $L^1 (\mathbb{R}^2)$, there is a Cwikel-Lieb-Rosenblum
type inequality for the number of negative eigenvalues of
the operator $\biggl( \frac{1}{i} \vec{\nabla} + \vec{A} \biggr)^2 - V$
in $L^2 (\mathbb{R}^2)$ when $\vec{A}$ is an Aharonov-Bohm magnetic
potential with non-integer flux. It is shown that
$ L^1 ( \mathbb{R}^+ , \ L^{\infty}(\mathbb{S}^1), \ rdr)$
can not be replaced by $L^1 (\mathbb{R}^2)$ in the inequality.
- Files:
00-405.src(
00-405.keywords ,
CLR_A-B.ps )