- 00-36 Laszlo Erdos, Jan Philip Solovej
- The kernel of Dirac operators on $S^3$ and $R^3$
(1253K, Postcript)
Jan 23, 00
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. In this paper we describe an intrinsically geometric way
of producing magnetic fields on $\S^3$ and $\R^3$
for which the corresponding Dirac operators have a non-trivial kernel.
In many cases we are able to compute the dimension of the kernel.
In particular we can give examples where the kernel has any
given dimension. This generalizes the examples of Loss and Yau
(Commun. Math. Phys. 104 (1986) 283-290).
- Files:
00-36.src(
00-36.keywords ,
zerofin.ps )