00-312 H. van den Bedem and N. Chernov
EXPANDING MAPS OF AN INTERVAL WITH HOLES (50K, LATeX) Aug 11, 00
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. We study a class of open chaotic dynamical systems. Consider an expanding map of an interval from which a few small open subintervals are removed (thus creating ``holes''). Almost every point of the original interval then eventually escapes through the holes, so there can be no absolutely continuous invariant measures. We construct a so called conditionally invariant measure that is equivalent to the Lebesgue measure. Our measure is unique and naturally generates another measure, which is singular but invariant. By this, we generalize early results by Pianigiani, Yorke, Collet, Martinez and Schmidt, who studied similar maps under an additional Markov assumption. We do not assume any Markov property here and use ``bounded variation'' techniques rather than Markov coding.

Files: 00-312.tex