00-303 Elliott H. Lieb and Jan Philip Solovej
Ground State Energy of the One-Component Charged Bose Gas (114K, latex) Jul 26, 00
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. The model considered here is the `jellium' model in which there is a uniform, fixed background with charge density $-e\rho$ in a large volume $V$ and in which $N=\rho V$ particles of electric charge $+e$ and mass $m$ move --- the whole system being neutral. In 1961 Foldy used Bogolubov's 1947 method to investigate the ground state energy of this system for bosonic particles in the large $\rho$ limit. He found that the energy per particle is $-0.402 \, r_s^{-3/4} {me^4}/{\hbar^2}$ in this limit, where $r_s=(3/4\pi \rho)^{1/3}e^2m/\hbar^2$. Here we prove that this formula is correct, thereby validating, for the first time, at least one aspect of Bogolubov's pairing theory of the Bose gas.

Files: 00-303.src( 00-303.comments , 00-303.keywords , 11foldy.tex )