% %%%%%%%%%%%%%%%%%%%%%%% AmS-TeX 2.1+ file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \input amstex % \documentstyle{amsppt} % These are all \input statements %\input mydefs % %\input references.def % % %%%%%%%%%%%%%%%% This is mydefs.tex %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \chardef\tempcat=\the\catcode`\@ \catcode`\@=11 % \def\m@ssage{\immediate\write16} % \def\ifundefined@#1{\expandafter\ifx\csname#1\endcsname\relax} % %%%%%%%%%%%%%%%%% Macros required to support the ability %%%%%%%%%%%%% %%%%%%%%%%%%%%%%% to process this file with amsppt.sty 2.1 %%%%%%%%%%% % % \linespacing command to introduce a factor by which % \normalbaselineskip will be multiplied. % \ifx\undefined\linespacing \def\linespacing#1{% \addto\tenpoint{\normalbaselineskip=#1\normalbaselineskip \normalbaselines \setbox\strutbox=\hbox{\vrule height.7\normalbaselineskip depth.3\normalbaselineskip}% \setbox\strutbox@\hbox{\raise.5\normallineskiplimit \vbox{\kern-\normallineskiplimit\copy\strutbox}}% }% \addto\eightpoint{\normalbaselineskip=#1\normalbaselineskip \normalbaselines \setbox\strutbox=\hbox{\vrule height.7\normalbaselineskip depth.3\normalbaselineskip}% \setbox\strutbox@\hbox{\raise.5\normallineskiplimit \vbox{\kern-\normallineskiplimit\copy\strutbox}}% }% } \fi % \nologo command to suppress % the `Typeset by AmS-TeX' logo % \ifx\undefined\nologo \def\nologo{\def\logo@{}} \fi % %%%%%%%%%%%%%%% Macros for equation numbering %%%%%%%%%%%%%%%%%%%%%%%%% % % Commands: % \eq to label the displayed equations % % \eqref to cite equations in the text % % \equationfile for listing of the equation % numbers in file .eqn % \newcount\tagnumber\tagnumber=0 % \immediate\newwrite\eqnfile \newif\if@qnfile\@qnfilefalse \def\write@qn#1{} \def\writenew@qn#1{} \def\w@rnwrite#1{\write@qn{#1}\m@ssage{#1}} \def\@rrwrite#1{\write@qn{#1}\errmessage{#1}} % \def\eqhead#1{\gdef\t@ghead{#1}\global\tagnumber=0} \def\t@ghead{} % \expandafter\def\csname @qnnum0\endcsname {\t@ghead\number\tagnumber} \expandafter\def\csname @qnnum+1\endcsname {{\t@ghead\advance\tagnumber by 1\relax\number\tagnumber}} \expandafter\def\csname @qnnum+2\endcsname {{\t@ghead\advance\tagnumber by 2\relax\number\tagnumber}} \expandafter\def\csname @qnnum+3\endcsname {{\t@ghead\advance\tagnumber by 3\relax\number\tagnumber}} \expandafter\def\csname @qnnum+4\endcsname {{\t@ghead\advance\tagnumber by 4\relax\number\tagnumber}} \expandafter\def\csname @qnnum+5\endcsname {{\t@ghead\advance\tagnumber by 5\relax\number\tagnumber}} \expandafter\def\csname @qnnum+6\endcsname {{\t@ghead\advance\tagnumber by 6\relax\number\tagnumber}} \expandafter\def\csname @qnnum+7\endcsname {{\t@ghead\advance\tagnumber by 7\relax\number\tagnumber}} % \def\equationfile{% \@qnfiletrue\immediate\openout\eqnfile=\jobname.eqn% \def\write@qn##1{\if@qnfile\immediate\write\eqnfile{##1}\fi} \def\writenew@qn##1{\if@qnfile\immediate\write\eqnfile {Equation (##1) = (\t@ghead\number\tagnumber)}\fi} } % \newhelp\helptext{If you call a series of equations by the notation M-N, then M and N must be integers, and N must be greater than or equal to M.} % \def\callall#1{\xdef#1##1{#1{\noexpand\call{##1}}}} \def\call#1{\each@rg\callr@nge{#1}} % \def\each@rg#1#2{{\let\thecsname=#1\expandafter\first@rg#2,\end,}} \def\first@rg#1,{\thecsname{#1}\apply@rg} \def\apply@rg#1,{\ifx\end#1\let\next=\relax% \else\unskip,\ % \thecsname{#1}\let\next=\apply@rg\fi\next} % \def\callr@nge#1{\calldor@nge#1-\end-} \def\callr@ngeat#1\end-{#1} \def\calldor@nge#1-#2-{\ifx\end#2\@qneatspace#1 % \else\calll@@p{#1}{#2}\callr@ngeat\fi} \def\calll@@p#1#2{\ifnum#1>#2{\errhelp=\helptext\@rrwrite{Equation % range #1-#2 \space is bad}}\else% {\count0=#1\count1=#2\advance\count1 by1\relax\expandafter\@qncall% \the\count0,\loop\advance\count0 by1\relax% \ifnum\count0<\count1, \expandafter\@qncall\the\count0,% \repeat}\fi} % \def\@qneatspace#1#2 {\@qncall#1#2,} \def\@qncall#1,{\ifundefined@{@qnnum#1}{\def\next{#1}\ifx\next\empty\else \w@rnwrite{The equation label (#1) has not been defined yet.} \fi}\else\csname @qnnum#1\endcsname\fi} % \def\eq#1$${\tag\displayt@g#1\unskip$$} % \def\displayt@g#1 {\ifundefined@{@qnnum#1}\global\advance\tagnumber by1 {\def\next{#1}\ifx\next\empty\else\expandafter \xdef\csname @qnnum#1\endcsname{\t@ghead\number\tagnumber}\fi}% \writenew@qn{#1}\t@ghead\number\tagnumber\else {\edef\next{\t@ghead\number\tagnumber}% \expandafter\ifx\csname @qnnum#1\endcsname\next\else \w@rnwrite{The equation label (#1) is duplicate.}\fi}% \csname @qnnum#1\endcsname\fi} % \let\@qnend=\end\gdef\end{\if@qnfile \m@ssage{Equation numbers written on \jobname.eqn}\fi\@qnend} % \define\eqref#1{\thetag{\call{#1}}} % %%%%%%%%%%%%%%%%%%%% Macros for references %%%%%%%%%%%%%%%%%%%%%%%%%%% % % Commands: % \refdef[...] ... \endrefdef is used to supply % each reference % % \Cite[...] are used to cite references % \xCite[...|...] in the text % % \References indicates the place of % the references section \refstyle{C} % \newcount\refnumber \refnumber=0 % \newwrite\R@fs \immediate\openout\R@fs=\jobname.aux % \def\closerefs{\immediate\closeout\R@fs} % \def\References{\closerefs\m@ssage{References.}\Refs@ \catcode`\@=11 \input\jobname.aux \catcode`\@=\tempcat\endRefs} \let\Refs@=\Refs % \def\b@ginref#1{\ref\no#1} % \def\r@fwr#1{\ifundefined@{#1R@FNO}% \global\advance\refnumber by1% \expandafter\xdef\csname#1R@FNO\endcsname{{\the\refnumber}}\r@wr{#1}\fi}% \def\r@wr#1{\ifundefined@{#1R@F}% \m@ssage{The reference [#1] to be supplied.}% \else\immediate\write\R@fs{\noexpand\b@ginref\csname#1R@FNO% \endcsname\noexpand\csname#1R@F\endcsname}\fi} % \def\Cite[#1]{\r@fwr{#1}\cite{\csname#1R@FNO\endcsname}} \def\xCite[#1|#2]{\r@fwr{#1}\cite{\csname#1R@FNO\endcsname% {\rm,\ #2}}} % \def\refdef[#1]#2\endrefdef{\expandafter\gdef\csname#1R@F% \endcsname{#2\endref}} % %%%%%%%%%%%%%%%%%%%% Macros for section numbering %%%%%%%%%%%%%%%%%%%% % % Commands: % \Introduction % \Section{...} % \Subsection{...} % \Subsubsection{...} % \Appendix{..}{...} % \Acknowledgments % % \SecHeadtoEqNumbers is used to number formulas % anew in each section % \SubSecHeadtoEqNumbers --- "" --- subsection % \SubSubSecHeadtoEqNumbers --- "" --- subsubsection % % \AppHeadtoEqNumbers is used to put appendix % names in front of % formula numbers % % \newcount\secnumber \newcount\subsecnumber \newcount\subsubsecnumber \secnumber=0 \subsecnumber=0 \subsubsecnumber=0 \def\SecHeadtoEqNumbers{\eqhead{\the\secnumber.}} \def\SubSecHeadtoEqNumbers{\eqhead{\the\secnumber.\the\subsecnumber.}} \def\SubSubSecHeadtoEqNumbers{\eqhead{\the\secnumber.\the\subsecnumber.% \the\subsubsecnumber.}} \newif\ifeqha \eqhafalse \let\AppHeadtoEqNumbers=\eqhatrue %---------------------------------------------------------------------- \def\Introduction{\he@d Introduction \endhead\m@ssage{Introduction}} % \def\Acknowledgments{\he@d Acknowledgments \endhead} % \def\Appendix#1#2{\he@d Appendix\ #1\unskip:\ #2\endhead\tagnumber=0\eqhead{}% \secnumber=0\subsecnumber=0\subsubsecnumber=0\ifeqha\eqhead{#1.}\fi% \m@ssage{Appendix #1}} % \def\Section#1{\global\advance\secnumber by1% \he@d\the\secnumber. #1\endhead\subsecnumber=0\subsubsecnumber=0% \m@ssage{Section \the\secnumber}} % \let\he@d=\head %---------------------------------------------------------------------- \def\Subsection#1{\global\advance\subsecnumber by1% \s@bhe@d\the\secnumber.\the\subsecnumber\ #1\endsubhead% \subsubsecnumber=0} % \def\AppSubsection#1{\global\advance\subsecnumber by1% \s@bhe@d\the\subsecnumber\ #1\endsubhead% \subsubsecnumber=0} % \let\s@bhe@d=\subhead %---------------------------------------------------------------------- \def\Subsubsection#1{\global\advance\subsubsecnumber by1% \s@bs@bhe@d\the\secnumber.\the\subsecnumber.% \the\subsubsecnumber\ #1\endsubsubhead} % \def\AppSubsubsection#1{\global\advance\subsubsecnumber by1% \s@bs@bhe@d\the\subsecnumber.\the\subsubsecnumber\ #1\endsubsubhead} % \let\s@bs@bhe@d=\subsubhead % %%%%%%%%%%%%%%%%%% Proclamations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Commands: % \"Proclamation" ... \end"Proclamation" % % \x"Proclamation"{...} ... \end"Proclamation" % % "Proclamation"s: Theorem Proof Example Remark % Proposition Proofetc Examples Claim % Lemma % Corollary Definition % % \Case{...} ... \endCase % % \2 to treat the next proclamation % as a subsection % % \3 to treat the next proclamation % as a subsubsection % % \prochead is the number of (sub)subsection % that is generated by command \2 (\3) % \def\prochead@{} \def\2{\global\advance\subsecnumber by1\subsubsecnumber=0% \gdef\prochead@{\the\secnumber.\the\subsecnumber. }} \def\3{\global\advance\subsubsecnumber by1% \gdef\prochead@{\the\secnumber.\the\subsecnumber\.\the\subsubsecnumber. }} \def\prochead{\prochead@\gdef\prochead@{}} % \def\Theorem#1\endTheorem{\pr@claim{\prochead{}Theorem}{\it#1}\endproclaim} \def\xTheorem#1#2\endTheorem{\pr@claim{\prochead{}% Theorem\ #1}{\it#2}\endproclaim} \def\Proposition#1\endProposition{\pr@claim{\prochead{}Proposition}{\it#1}% \endproclaim} \def\xProposition#1#2\endProposition{\pr@claim{\prochead{}Proposition% \ #1}{\it#2}\endproclaim} \def\Lemma#1\endLemma{\pr@claim{\prochead{}Lemma}{\it#1}\endproclaim} \def\xLemma#1#2\endLemma{\pr@claim{\prochead{}Lemma\ #1}{\it#2}% \endproclaim} \def\Corollary#1\endCorollary{\pr@claim{\prochead{}Corollary}{\it#1}% \endproclaim} \def\xCorollary#1#2\endCorollary{\pr@claim{\prochead{}Corollary\ #1}% {\it#2}\endproclaim} \let\pr@claim=\proclaim %---------------------------------------------------------------------- \define\Proof{\demo{\prochead{}Proof}} \define\Proofetc{\demo\nofrills{\prochead{}Proof\/\hphantom{ }}} \define\xProof#1{\demo{\prochead{}Proof\ #1}} \define\endProof{\ifmmode\qed\else{{\unskip\nobreak\hfil \penalty50\null\nobreak\hfil$\qed$ \parfillskip=0pt\finalhyphendemerits=0\endgraf}\fi}\enddemo} \define\doubleendProof{\ifmmode\qed\else{{\unskip\nobreak\hfil \penalty50\null\nobreak\hfil$\qed$ \parfillskip=0pt\finalhyphendemerits=0\endgraf}\fi} \revert@envir\enddemo \endremark \enddemo} % (see The TeXbook, p.106) %---------------------------------------------------------------------- \def\Example#1\endExample{\ex@mple{\prochead{}Example}#1\endexample} \def\xExample#1#2\endExample{\ex@mple{\prochead{}Example #1}#2% \endexample} \def\Examples#1\endExamples{\ex@mple{\prochead{}Examples}#1\endexample} \def\xExamples#1#2\endExamples{\ex@mple{\prochead{}Examples\ #1}#2% \endexample} % \let\ex@mple=\example %---------------------------------------------------------------------- \def\Definition#1\endDefinition{\def@nition{\prochead{}Definition}#1% \enddefinition} \def\xDefinition#1#2\endDefinition{\def@nition{\prochead{}Definition% \ #1}#2\enddefinition} % \let\def@nition=\definition %---------------------------------------------------------------------- \def\Remark#1\endRemark{\rem@rk{\prochead{}Remark}#1\endremark} \def\xRemark#1#2\endRemark{\rem@rk{\prochead{}Remark\ #1}#2\endremark} \def\Claim#1\endClaim{\rem@rk{\prochead{}Claim}#1\endremark} \def\xClaim#1#2\endClaim{\rem@rk{\prochead{}Claim\ #1}#2\endremark} \def\Case#1#2\endCase{\rem@rk{\prochead{}Case\ #1}#2\endremark} % \let\rem@rk=\remark % %%%%%%%%%%%%%%%%%%%%%%%%%%%%% Cross-references %%%%%%%%%%%%%%%%%%%%%%% % % Commands: % \label % % \labelref % \def\label#1{\ifundefined@{l@bel#1}% \expandafter\xdef\csname l@bel#1\endcsname% {\ifnum\secnumber=0 \else\number\secnumber\fi% \ifnum\subsecnumber=0 \else{\ifnum\secnumber=0 \else.\fi}\number\subsecnumber% \ifnum\subsubsecnumber=0 \else.\number\subsubsecnumber\fi\fi}% \else\m@ssage{The label {#1} defined twice.}\fi} % \def\labelref#1{% \ifundefined@{l@bel#1}% \m@ssage{Undefined label: #1}% \else{\csname l@bel#1\endcsname}\fi} % %%%%%%%%%%%%%%%%%% Miscellaneous useful stuff %%%%%%%%%%%%%%%%%%%%%%%% % %--Current time (\SetTime, \clock, \militaryclock) % \newcount\h@ur \newcount\m@nute \newtoks\am@rpm \define\SetTime{\h@ur=\time\divide\h@ur by60 \m@nute=\time{\multiply\h@ur by60 \global\advance\m@nute by-\h@ur}} \define\clock{{\ifnum\h@ur<12 \global\am@rpm={\,am}% \else\global\am@rpm={\,pm}\advance\h@ur by-12 \fi \ifnum\h@ur=0 \h@ur=12 \fi \number\h@ur:\ifnum\m@nute<10 0\fi\number\m@nute\the\am@rpm}} \define\militaryclock{\number\h@ur:\ifnum\m@nute<10 0\fi\number\m@nute} %---------------------------------------------------------------------- %--Italic correction ( \< ... > ) % \define\<#1>{{\it #1}\sm@rtitcor} % \def\sm@rtitcor{\ifhmode\expandafter\itp@nclook\fi} \def\itp@nclook{\begingroup\futurelet\ITCt@mpa\itc@rtest} \def\itc@rtest{% \def\ITCt@mpb{\ITCt@mpa}% \ifcat\noexpand\ITCt@mpa ,% \setbox0\hbox{\ITCt@mpb}% \ifdim\ht0<.3ex % \let\itc@rdo\endgroup % \fi\fi \itc@rdo}% \def\itc@rdo{% \skip0=\lastskip \ifdim\skip0=0pt\/\else\unskip \/\hskip\skip0 \fi \endgroup} % %---------------------------------------------------------------------- \catcode`\@=\tempcat %---------------------------------------------------------------------- %--Today's date (Based on The TeXbook, p.406) % \define\today{\number\day\space\ifcase\month\or January\or February\or March\or April\or May\or June\or July\or August\or September\or October\or November\or December\fi \space\number\year} %---------------------------------------------------------------------- \define\al{\alpha} \define\be{\beta} \define\ga{\gamma} \define\de{\delta} \define\ep{\varepsilon} \define\ze{\zeta} \define\et{\eta} \define\th{\theta} \define\io{\iota} \define\ka{\kappa} \define\la{\lambda} \define\rh{\rho} \define\si{\sigma} \define\ta{\tau} \define\ph{\varphi} \define\ch{\chi} \define\ps{\psi} \define\om{\omega} % \define\Ga{\Gamma} \define\De{\Delta} \define\Th{\Theta} \define\La{\Lambda} \define\Si{\Sigma} \define\Ph{\Phi} \define\Ps{\Psi} \define\Om{\Omega} %---------------------------------------------------------------------- \define\bA{\Bbb A} \define\bB{\Bbb B} \define\bC{\Bbb C} \define\bD{\Bbb D} \define\bE{\Bbb E} \define\bF{\Bbb F} \define\bG{\Bbb G} \define\bH{\Bbb H} \define\bI{\Bbb I} \define\bJ{\Bbb J} \define\bK{\Bbb K} \define\bL{\Bbb L} \define\bM{\Bbb M} \define\bN{\Bbb N} \define\bO{\Bbb O} \define\bP{\Bbb P} \define\bQ{\Bbb Q} \define\bR{\Bbb R} \define\bS{\Bbb S} \define\bT{\Bbb T} \define\bU{\Bbb U} \define\bV{\Bbb V} \define\bW{\Bbb W} \define\bX{\Bbb X} \define\bY{\Bbb Y} \define\bZ{\Bbb Z} %---------------------------------------------------------------------- \define\cA{\Cal A} \define\cB{\Cal B} \define\cC{\Cal C} \define\cD{\Cal D} \define\cE{\Cal E} \define\cF{\Cal F} \define\cG{\Cal G} \define\cH{\Cal H} \define\cI{\Cal I} \define\cJ{\Cal J} \define\cK{\Cal K} \define\cL{\Cal L} \define\cM{\Cal M} \define\cN{\Cal N} \define\cO{\Cal O} \define\cP{\Cal P} \define\cQ{\Cal Q} \define\cR{\Cal R} \define\cS{\Cal S} \define\cT{\Cal T} \define\cU{\Cal U} \define\cV{\Cal V} \define\cW{\Cal W} \define\cX{\Cal X} \define\cY{\Cal Y} \define\cZ{\Cal Z} %---------------------------------------------------------------------- \define\sq{\square} \define\na{\nabla} \define\x{\times} \define\ox{\otimes} \define\[{\left[} \define\]{\right]} \define\({\left(} \define\){\right)} \define\ng{\leqslant} \define\nl{\geqslant} \define\>{\hfil\ifmmode\mathbreak\else\break\fi} \define\inner{\mathbin{\raise2.5pt\hbox{\hbox{{\vbox{\hrule height.4pt width6pt depth0pt}}}\vrule height3pt width.4pt depth0pt}\,}} \newsymbol\Empty 203F % better empty set than \emptyset \define\ie{i\.e., } \define\eg{e\.g., } \define\Eg{E\.g., } \define\etc{etc\. } \define\cf{cf.~} \define\Cf{Cf.~} \define\resp{resp\. } \define\for{\qquad\text{for }} \define\dd{\partial} \define\cprime{$\mathsurround=0pt '$} % cyr. prime (soft sign) % for bibliography \define\dash{\thinspace@---\thinspace} % \define\im {\operatorname{im}\nolimits} \define\coker {\operatorname{coker}\nolimits} \define\coim {\operatorname{coim}\nolimits} \define\ord {\operatorname{ord}\nolimits} \define\Hom {\operatorname{Hom}\nolimits} \define\Hm {\operatorname{H}\nolimits} % %---------------------------------------------------------------------- \hyphenation{ad-ding al-ge-bras an-ti-au-to-mor-phism as-so-ci-at-ed as-sump-tion be-cause Berezin-ian ca-non-i-cal cat-e-go-ry cat-e-go-ries cen-tral char-ac-ter-iza-tion co-ho-mo-log-ous co-ho-mo-log-i-cal co-ho-mol-o-gy com-bi-na-tion com-mu-ta-tive com-pat-i-ble com-ple-men-ta-ry com-plex com-plex-es com-po-nents com-pos-ing co-mul-ti-pli-ca-tion con-di-tion con-di-tions con-sid-er con-struct con-struc-ted con-struc-tion con-verg-ing cor-ol-lary cor-re-spond-ing de-creas-ing de-gen-er-ates de-rived de-ter-mined di-a-gram dif-fer-ence dif-fer-en-tial di-men-sion-al dis-tin-guished el-e-ments en-vel-op-ing ep-i-mor-phism equa-tion equiv-a-lenc-es es-sen-tial-ly es-tab-lishes eval-u-a-tion ev-ery-where ev-i-dent-ly ex-te-ri-or fol-low-ing fol-lows func-tions func-tor func-tors gen-er-at-ed gen-er-a-tors Helm-holtz ho-mo-log-ous ho-mo-log-i-cal ho-mo-ge-neous ho-mo-mor-phism ho-mo-mor-phisms ho-mo-to-py im-por-tance im-por-tant in-jec-tive in-vari-ants iso-mor-phism Lem-ma mani-fold mani-folds map-pings mea-sures mod-ule mo-nom-i-al more-over mor-phism nat-u-ral par-tic-u-lar poly-no-mi-als pro-jec-tive Prop-o-si-tion rel-e-vant rep-re-sen-ta-tion rep-re-sen-ta-tions res-o-lu-tion res-o-lu-tions re-spect re-spec-tive-ly semi-reg-u-lar se-quenc-es sig-nif-i-cant stan-dard straight-for-ward struc-ture struc-tures sub-spaces suc-ceed-ing super-mani-fold super-mani-folds tech-nique The-o-rem top-o-log-i-cal to-pol-o-gized tri-an-gles tri-an-gu-la-ted un-der-stood ze-ro} %---------------------------------------------------------------------- % [end of file `mydefs.tex'] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%% References %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %--AMV % \refdef[al] \by A. M. Vinogradov \paper The logic algebra for the theory of linear differential operators \jour Dokl. Akad. Nauk SSSR \vol 205 \yr 1972 \pages 1025--1028 \lang Russian \transl\nofrills English transl. in \jour Soviet Math. Dokl. \vol 13 \yr 1972 \pages 1058--1062 \endrefdef \refdef[viniti] \by A. M. Vinogradov \paper Geometry of nonlinear differential equations \paperinfo Itogi nauki i tekhniki, Problemy geometrii, Tom 11 \yr 1980 \pages 89--134 \lang Russian \transl\nofrills English transl. in \jour J. Sov. Math. \vol 17 \yr 1981 \pages 1624--1649 \endrefdef \refdef[GrAv] \by A. M. Vinogradov, I. S. Krasil\cprime{}shchik, and V. V. Lychagin \book Introduction to the geometry of nonlinear differential equations \publ ``Nauka'' \publaddr Moscow \yr 1986 \lang Russian \transl English transl. \book Geometry of jet spaces and nonlinear partial differential equations \publ Gordon and Breach \publaddr New York \yr 1986 \endrefdef \refdef[C-art] \by A. M. Vinogradov \paper The $\cC$-spectral sequence, Lagrangian formalism, and conservation laws \paperinfo I. The linear theory, II. The nonlinear theory \jour J. Math. Anal. Appl. \vol 100 \yr 1984 \pages 1--129 \endrefdef \refdef[28] \by D. V. Alekseevskij, A. M. Vinogradov, V. V. Lychagin \book Basic ideas and concepts of differential geometry \bookinfo Itogi nauki i tekhniki, Sovremennye problemy matematiki, Fundamental\cprime{}nye napravleniya, Tom 28, Geometriya I \publ VINITI \publaddr Moscow \yr 1988 \lang Russian \transl English transl. \inbook Encyclopaedia of mathematical sciences \vol 28 \bookinfo Geometry I \publ Springer-Verlag \publaddr Berlin and Heidelberg \yr 1991 \endrefdef \refdef[SecCal] \by A. M. Vinogradov \paper From symmetries of partial differential equations towards the secondary {\rm(}``quantized''{\rm)}\/ calculus \paperinfo Preprint ESI 9 \yr 1993 \moreref \jour J. Geom. Phys. \yr 1994 \toappear \endrefdef %---------------------------------------------------------------------- %--The Seminar % \refdef[VVLlect] \by V. V. Lychagin \paper Quantum mathematics \paperinfo Lectures given at the Moscow State University in 1992-93 \endrefdef \refdef[Lych1] \by V. V. Lychagin \paper Quantizations of braided differential operators \paperinfo Preprint ESI 51 \yr 1993 \endrefdef \refdef[Lych2] \by V. V. Lychagin \paper Braided differential operators and quantization in ABC-categories \jour C. R. Acad. Sc. Paris, S\'erie I Math. \vol 318 \yr 1994 \pages 857--862 \endrefdef \refdef[Lych3] \by V. V. Lychagin \paper Calculus and quantizations over Hopf algebras \paperinfo Preprint hep-th/9406097 \yr 1994 \endrefdef \refdef[MMV] \by M. M. Vinogradov \paper Fundamental functors of differential calculus in graded algebras \jour Uspekhi Mat. Nauk \vol 44 \issue 3 \yr 1989 \pages 151--152 \lang Russian \transl\nofrills English transl. in \jour Russian Math. Surveys \vol 44 \issue 3 \yr 1989 \pages 220--221 \endrefdef %---------------------------------------------------------------------- %--Jet community % \refdef[Olver] \by P. J. Olver \book Applications of Lie groups to differential equations \publ Springer-Verlag \publaddr New-York \yr 1986 \endrefdef \refdef[And1] \by I. M. Anderson \paper Introduction to the variational bicomplex \inbook Contemporary Mathematics \vol 132 \yr 1992 \pages 51--73 \bookinfo Mathematical Aspects of Classical Field Theory \publ Amer. Math. Soc. \publaddr Providence, R.~I. \endrefdef \refdef[Kuper1] \by B. A. Kupershmidt \book The variational principles of dynamics \publ World Scientific \publaddr Singapore \yr 1992 \endrefdef %---------------------------------------------------------------------- %--Graded texts % \refdef[Pen] \by I. B. Penkov \paper $\cD$-modules on supermanifolds \jour Invent. math. \vol 71 \yr 1983 \pages 501--512 \endrefdef \refdef[Ber] \by F. A. Berezin \book Introduction to superanalysis \publ D. Reidel \publaddr Dordrecht \yr 1987 \endrefdef \refdef[Manin1] \by Yu. I. Manin \book Gauge field theory and complex geometry \publ ``Nauka'' \publaddr Moscow \yr 1984 \lang Russian \transl English transl. \publ Springer-Verlag \publaddr Berlin and Heidelberg \yr 1988 \endrefdef \refdef[Lei] \by D. A. Leites \paper Introduction to the theory of supermanifolds \jour Uspekhi Mat. Nauk \vol 35 \issue 1 \yr 1980 \pages 3--57 \lang Russian \transl\nofrills English transl. in \jour Russian Math. Surveys \vol 35 \issue 1 \yr 1980 \pages 1--64 \endrefdef \refdef[BerLei] \by I. N. Bernshtein and D. A. Leites \paper Integral forms and the Stokes formula on supermanifolds \jour Funktsional. Anal. i Pri\-lo\-zhen. \vol 11 \issue 1 \yr 1977 \pages 55-56 \lang Russian \transl\nofrills English transl. in \jour Functional Anal. Appl. \vol 11 \yr 1977 \pages 45--47 \endrefdef \refdef[Kuper2] \by B. A. Kupershmidt \paper An algebraic model of graded calculus of variations \jour Math. Proc. Camb. Phil. Soc. \vol 101 \yr 1987 \pages 151--166 \endrefdef \refdef[Matt] \by R. Matthes \paper ``Quantum group'' structure and ``covariant'' differential calculus on symmetric algebras corresponding to commutation factors on $\bZ^n$ \inbook Quantum groups and related topics \yr 1992 \pages 45--54 \eds R. Gielerak, J. Lukierski, and Z. Popowicz \publ Kluwer Academic Publishers \publaddr Dordrecht \endrefdef \refdef[BoMaOz] \by A. Borowiec, W. Marcinek, and Z. Oziewicz \paper On multigraded differential calculus \inbook Quantum groups and related topics \yr 1992 \pages 103--114 \eds R. Gielerak, J. Lukierski, and Z. Popowicz \publ Kluwer Academic Publishers \publaddr Dordrecht \endrefdef \refdef[BoPi] \by P. J. M. Bongaarts and H. G. J. Pijls \paper Almost commutative algebra and differential calculus on the quantum hyperplane \jour J. Math. Phys. \vol 35 \yr 1994 \pages 959--970 \endrefdef \refdef[Rieffel] \by M. A. Rieffel \paper Non-commutative tori\dash{}A case study of non-commutative differentiable manifolds \inbook Contemporary Mathematics \vol 105 \yr 1990 \pages 191--211 \bookinfo Geometric and Topological Invariants of Elliptic Operators \publ Amer. Math. Soc. \publaddr Providence, R.~I. \endrefdef \refdef[CoJaKa] \by R. Coquereaux, A. Jadczyk, and D. Kastler \paper Differential and integral geometry of Grassmann algebras \jour Rev. Math. Phys. \vol 3 \yr 1991 \pages 63--99 \endrefdef \refdef[Manin2] \by Yu. I. Manin \book Topics in noncommutative geometry \publ Princeton Univ. Press \yr 1991 \endrefdef \refdef[Manin3] \by Yu. I. Manin \book Quantum groups and non-commutative geometry \bookinfo Lecture notes \publ CRM, Universit\'e de Montr\'eal \yr 1989 \endrefdef \refdef[LuRi] \by J. Lukierski and V. Rittenberg \paper Color--de Sitter and color-conformal superalgebras \jour Phys. Rev. D \vol 18 \yr 1978 \pages 385--389 \endrefdef \refdef[RiWy] \by V. Rittenberg and D. Wyler \paper Generalized superalgebras \jour Nucl. Phys. B \vol 139 \yr 1978 \pages 189--202 \endrefdef \refdef[Brac] \by J. Braconnier \book \'El\'ements d'alg\`ebre diff\'erentielle gradu\'ee \publ Publ. D\'ep. de Math. (Lyon) (N.S.) \yr 1982 \lang French \endrefdef \refdef[Bour] \by N. Bourbaki \book \'El\'ements de math\'ematique, Alg\`ebre, Chapitres 1 \`a 3 \bookinfo Nouvelle \'edition \publ Hermann \publaddr Paris \yr 1970 \lang French \transl English transl. \book Elements of mathematics, Algebra, Chapters 1--3 \publ Hermann \publaddr Paris \yr 1974 \endrefdef \refdef[HRMM] \by D. Hern\'andez Ruip\'erez and J. Mu\~noz Masqu\'e \paper Construction intrins\`eque du faisceau de Berezin d'une vari\'et\'e gradu\'ee \jour C. R. Acad. Sc. Paris, S\'erie I Math. \vol 301 \yr 1985 \pages 915--918 \lang French \endrefdef \refdef[MoMM] \by J. Monterde and J. Mu\~noz Masqu\'e \paper Variational problems on graded manifolds \inbook Contemporary Mathematics \vol 132 \yr 1992 \pages 551--571 \bookinfo Mathematical Aspects of Classical Field Theory \publ Amer. Math. Soc. \publaddr Providence, R.~I. \endrefdef \refdef[Mo] \by J. Monterde \paper Higher order graded and Berezinian Lagrangian densities and their Euler-Lagrange equations \jour Ann. Inst. H. Poincar\'e Phys. Th\'eor. \vol 57 \yr 1992 \pages 3--26 \endrefdef \refdef[IbMS] \by L. A. Ibort and J. Mar\'\i{}n-Solano \paper Geometrical foundations of Lagrangian supermechanics and supersymmetry \jour Rep. Math. Phys. \vol 32 \yr 1993 \pages 385--409 \endrefdef \refdef[ILMSM] \by L. A. Ibort, G. Landi, J. Mar\'\i{}n-Solano, and G. Marmo \paper On the inverse problem of Lagrangian supermechanics \jour Internat. J. Modern Physics A \vol 8 \yr 1993 \pages 3565--3576 \endrefdef \refdef[Len] \by E. D. van der Lende \book Super integrable systems \bookinfo PhD thesis, Univ. of Amsterdam \yr 1991 \endrefdef \refdef[Roe] \by G. H. M. Roelofs \book Prolongation structures of supersymmetric systems \bookinfo PhD thesis, Univ. of Twente, The Netherlands \yr 1993 \endrefdef \refdef[Rem] \by J. Rembieli\'nski \paper Differential and integral calculus on the quantum $\bC$-plane \inbook Quantum groups and related topics \yr 1992 \pages 129--139 \eds R. Gielerak, J. Lukierski, and Z. Popowicz \publ Kluwer Academic Publishers \publaddr Dordrecht \endrefdef \refdef[ChrZum] \by C. Chryssomalakos and B. Zumino \paper Translations, integrals and Fourier transformations in the quantum plane \paperinfo Preprint LBL-34803, UCB-PTH-93/30 \yr 1993 \endrefdef \refdef[KemMaj] \by A. Kempf and S. Majid \paper Algebraic $q$-integration and Fourier theory on quantum and braided spaces \paperinfo Preprint DAMTP/94-7, hep-th/9402037 \yr 1994 \endrefdef %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % [end of file] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%% Preamble commands %%%%%%%%%%%%%%%%%%%%%%%%%%% % %-- Page dimensions % \mag=\magstep 1 % \pagewidth{15 true cm} % all other values \pageheight{23 true cm} % remain unchanged \hcorrection{0.6 true cm} % \vcorrection{0.9 true cm} % \linespacing{1.5} % % % %-- Initialization % \NoBlackBoxes \hfuzz=1pc % to suppress reporting of overfull boxes \vbadness=10000 \scrollmode \nopagenumbers \pageno=1 \TagsOnRight %\AppHeadtoEqNumbers \nologo \widestnumber\no{99} % %\SetTime %\equationfile % %-- Approximations, no "actual-size" fonts available % \catcode`\@=11 % \font@\eightsmc=cmcsc10 at 8.3333333pt % \addto\eightpoint{\font@\eightmsb=msbm10 at 8.3333333pt \textfont\msbfam=\eightmsb \font@\eightex=cmex10 at 8.3333333pt \textfont\thr@@=\eightex} % \addto\tenpoint{\font@\sevenmsa=msam10 at 8.3333333pt \font@\sevenex=cmex10 at 8.3333333pt \scriptfont\msafam=\sevenmsa \scriptfont\thr@@=\sevenex} % \catcode`\@=\tempcat % %%%%%%%%%%%%%%%%%%%%% Pre-Top Matter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \def\pretitle{\eightpoint \hfill Preprint SISSA 93/94/FM \par \hfill mp\_arc 94--??? \par \hfill hep-th/9407037 \par \vskip 5true cm} %%%%%%%%%%%%%%%%%%%%%%%% Top Matter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % \topmatter \title Lagrangian formalism over graded algebras \endtitle \author Alexander Verbovetsky \endauthor %\leftheadtext{...} \rightheadtext{Lagrangian formalism over graded algebras} \affil Scuola Internazionale Superiore di Studi Avanzati,\\ Trieste, Italy \endaffil \address S.I.S.S.A., Via Beirut 2-4, 34013 Trieste, Italy \endaddress %\curraddr ... \endcurraddr \email verbovet\@tsmi19.sissa.it; verbovet\@itssissa.bitnet \endemail %\dedicatory ... \enddedicatory \date {July 1994} \enddate %\thanks ... \endthanks \keywords Graded module, commutation factor, adjoint operator, Berezinian, complex of integral forms, Lagrangian formalism, supermanifold, noncommutative differential calculus \endkeywords \subjclass Primary 58E30, 58A50, 58B30; Secondary 81T60, 83E50, 16W50, 46L87, 14A22 \endsubjclass % \abstract This paper provides a description of an algebraic setting for the Lagrangian formalism over graded algebras and is intended as the necessary first step towards the noncommutative $\cC$-spectral sequence (variational bicomplex). A noncommutative version of integration procedure, the notion of adjoint operator, Green's formula, the connection between integral and differential forms, conservation laws, Euler operator, Noether's theorem is considered. \endabstract % \endtopmatter % \newpage % % %%%%%%%%%%%%%%%%%%%%%%%% Macros specific to this article %%%%%%%%%%%%%%% % \define\com{\operatorname{\circ}\limits} \define\ao#1{#1{}^\circ} \define\ah#1{\widehat{#1}} \define\do{d.o\.} \define\p(#1,#2){\left\langle#1,#2\right\rangle} \define\Diff{\operatorname{Diff}} \define\Smbl{\operatorname{Smbl}} \define\Der{\operatorname{D}} \define\DER{\operatorname{Der}} \define\J{\operatorname{\Cal J}} \define\JI{\operatorname{\J^\infty}} \define\T{\operatorname{T}} \define\Ber{\operatorname{Ber}} \define\G{\operatorname{G}} \define\F{\operatorname{F}} \define\Cl{\operatorname{Cl}} % % \document %%%%% **** The text of the article **** %%%%%%%%%%%%%%%%%%%% % \Introduction An outstanding progress which has in last years been made by noncommutative geometry stems out of shifting of the interests away from the original idea of geometrizing noncommutative rings using the language of noncommutative schemes. Now it has become clear that, bypassing the difficult problem of glueing noncommutative spectra, one can define directly differential geometric objects on a hypothetical ``noncommutative space''. This is based on two essential points: the possibility of reformulating the classical notions of analysis and differential geometry in pure algebraic terms, so that differential calculus becomes an extension of the language of commutative algebra (for a very enlightening discussion see \Cite[28]), and the existence of several quite important cases in which one is able to go beyond the commutative case (see \Cite[Manin2]). This ideas have proven to be very successful and gives an impetus to new researches whose aim is to transplant the classical tools of analysis and geometry into a noncommutative setting. An instance of this comes from the current work on noncommutative ( and first of all supercommutative) theory of integration, conservation laws, and the Lagrangian formalism (see \Cite[Kuper2], \Cite[Kuper1], \Cite[Len], \Cite[Mo], \Cite[MoMM], \Cite[IbMS], \Cite[ILMSM], \Cite[Roe], \Cite[Rem], \Cite[ChrZum], \Cite[KemMaj] and others). A key problem arises here is the description of integration procedure. The first question is the following: Given a commutative algebra, how to define the module of volume forms? An answer to this question must, in particular, give the possibility to define the Berezin volume forms on a supermanifold in usual fashion, \ie by using the rule of signs. The well-known peculiarities of the Berezin integration show the character of the problem and result in the loss of a clear algebraic setting for integration procedure and related things. The subject of this paper is an algebraic picture underlying the Lagrangian formalism and giving a solution of the problems discussed above. We work here over an arbitrary graded-commutative (with respect to a commutation factor) algebra to show that our constructions of volume forms, adjoint operators, the Euler operator, algebraic Green's formula, Noether's theorem, \etc can be extended to such an algebra in a simple and straightforward manner. On the other hand, the class of graded-commutative algebras is important in itself because it includes supercommutative, colour-commutative (see \Cite[LuRi],\Cite[RiWy],\Cite[BoMaOz] and references therein), and ``quantum'' algebras (see \Cite[Matt], \Cite[BoMaOz], \Cite[BoPi] and others). We have chosen here not to accumulate formulas for specific algebras, but to present a general scheme, using examples for illustrations only. The applications will be described separately. Our ultimate goal, which is outside the present paper, is to develop the super- and non-commutative generalizations of the $\cC$-spectral sequence (variational bicomplex) (see \Cite[C-art], \Cite[And1]), which is a means for studying all aspects of the Lagrangian formalism: the inverse problem, the description of conservation laws, characteristic classes and so on. The paper is organized as follows. In Section 1 we sketch the necessary definitions and facts from calculus over graded algebras. In Section 2 the main objects of this paper\dash adjoint operators and the Berezinian\footnote{We use this name for the module of volume forms.}\dash are defined. We want to emphasize that these definitions, which are the deus ex machina from that everything else follows, arose from an interplay between ideas and constructions of works \Cite[Pen], where the Berezin forms have been explained in terms of $\cD$-modules, and \xCite[C-art|part I], where structure of Lagrangian formalism for a smooth commutative algebra has been clarified. In Section 3 we consider the Spencer complexes, algebraic Green's formula, and related staff. The main difference from non-graded case (see \Cite[C-art]) is the appearance of a new complex dual to the de~Rham complex: complex of integral forms (the name borrowed from the supergeometry). The Lagrangian formalism, theory of conservation laws, and the Noether theorem are developed in Section 4. In the Appendix we briefly describe, in a pure algebraic manner, the formalism of right connections (see \Cite[Manin1]), which is closely related with our subject. \Section{A Sketch of Differential Calculus over Graded Algebras} \Subsection{} We start with definitions of graded objects (see, \eg \Cite[Bour]). Let $G$ be an Abelian group written additively and $K$ a commutative ring with unit. Denote by $K^*$ the multiplicative group of invertible elements of K. Let us fix a \ $\{\cdot\,,\cdot\}\:G\x G\to K^*$, $g_1\x{}g_2\mapsto\{g_1,g_2\}$, \ie a map satisfying two properties: \roster \item"{1.}" $\{g_1,g_2\}^{-1}=\{g_2,g_1\}$ \item"{2.}" $\{g_1+g_2,g_3\}=\{g_1,g_3\}\{g_2,g_3\}$ \endroster We have also $\{g_1,g_2+g_3\}=\{g_1,g_2\}\{g_1,g_3\}$ as a consequence of the definition. \xExample{1} Let $G=\bZ^n=\bZ\oplus\ldots\oplus\bZ$. Then it is easily shown that any commutation factor has the form: $$\{g,h\}=\prod_{i=1}^n q_i^{g_ih_i}\cdot\prod_{i if $$ab=\{a,b\}ba\qquad\forall a,b\in A.$$ For this type of notation we always assume that $a$ and $b$ are homogeneous and that the symbol of graded object used as argument of the commutative factor denotes the grading of this object. \xExample{4} A commutative algebra (graded or not) is graded commutative with respect to the trivial commutation factor $\{g_1,g_2\}=1$. \endExample \xExample{5} The algebra $C^\infty\(M\)$ of smooth functions on a supermanifolds $M$ is graded commutative with respect to the superfactor $\{g_1,g_2\}=\(-1\)^{g_1g_2}, G=\bZ_2$. \endExample \xExample{6. Quantum superplane (\Cite[Manin3], \Cite[Manin2])} Let $K$ be a field and $K^n$ the $n$-dimensional coordinate vector space over $K$. Picking up an arbitrary commutation factor over $\bZ^n$ (see Examples 1--3), the quadratic algebra $A=\T\(K^n\)/R$, where $\T\(K^n\)$ is the tensor algebra over $K^n$ with the natural $\bZ^n$-grading and $R$ is the ideal in $\T\(K^n\)$ generated by the elements $x_1\ox x_2-\{x_1,x_2\}x_2\ox x_1$, $x_1,x_2\in K^n$, is called the algebra of polynomial functions on the quantum superplane $\bA_q$. \endExample \xExample{7. Non-commutative torus (\Cite[Rieffel], \Cite[Manin2])} Let $K=\bC$, $G=\bZ^n$, and $A$ be the space of all complex valued functions on $\bZ^n$ that decay faster than any polynomial. $A$ has the natural $\bZ^n$-grading. Denote by $e\(k\)$ the function which is equal to 1 at $k\in\bZ^n$ and zero at all other points (a basic harmonic on a non-commutative torus). Then any element of $A$ can be written as $\sum_k a_ke\(k\)$. Given a skew bilinear form $\th\:\bZ\x\bZ\to\bR$, we define a multiplication on $A$ by setting $e\(k\)e\(l\)=e^{2\pi{}i\th\(k,l\)}e\(k+l\)$. It is straightforward to check that the algebra $A$, called the algebra of (smooth) functions on the non-commutative torus $\bT_{\th}$, is graded commutative with respect to the commutation factor from Example 3. \endExample \Remark In \Cite[VVLlect], \Cite[Lych3] Lychagin has shown that one can also define commutation factors over a non-commutative group $G$ and introduce all notions of the $G$-graded differential calculus in these circumstances. \endRemark In this article we work in the category $\cM od_A$ of all $G$-graded modules over a graded commutative algebra $A$. Clearly any left module $P$ can be transformed canonically into a right module, $pa=\{p,a\}ap$ for $a\in A$, $p\in P$, so that we may consider $P$ as a bimodule. \Remark The category $\cM od_A$ is a \ (see, \eg \Cite[Manin2]) with respect to the commutativity constraint $$S_{P,Q}\:P\ox Q\to Q\ox P,\qquad p\ox q\mapsto \{p,q\}q\ox p.$$ A generalization of our constructions to an arbitrary Abelian closed tensor category appears to be very interesting. Meaningful results along this line, dealing with basic concepts of the differential calculus, may be found in \Cite[Lych1], \Cite[Lych2]. \endRemark \Subsection{} We now introduce basic objects of the differential calculus(for details see \Cite[GrAv], \Cite[MMV]). Let $\De\in\Hom_K\(P,Q\)$ be a $K$-homomorphism, $P$ and $Q$ being $A$-modules. For every element $a\in A$ define a $K$-homomorphism $\de_a\(\De\)\:P\to Q$ by setting $\de_a\(\De\)\(p\)=\{a,\De\}\De\(ap\)-a\De\(p\)$, $p\in P$. Obviously, $\de_a\com\de_b=\de_b\com\de_a\quad\forall{}a,b\in A$. Put $\de_{a_0,\ldots,a_k}=\de_{a_0}\com\ldots\com\de_{a_k}$. \Definition A $K$-homomorphism $\De\in\Hom_K\(P,Q\)$ is called a \ (\do) of order $\ng{}k$, if for all $a_0,\ldots,a_k\in A$ we have $\de_{a_0,\ldots,a_k}\(\De\)=0$. \endDefinition The set of all d.0.'s of order $\ng{}k$, from $P$ to $Q$, may be endowed with two $A$-module structures by putting $a\De=a\com\De$ or $a\De=\De\com{}a$, where $a\in A$ is understood as the operator of multiplying by $a$. The modules that arise in this way are denoted by $\Diff_k\(P,Q\)$ and $\Diff_k^+\(P,Q\)$ respectively. Clearly, $\Diff_k^{\(+\)}\(P,Q\)\subset\Diff_l^{\(+\)}\(P,Q\)$ for $k\ng{}l$, so that we may consider the union $\Diff^{\(+\)}\(P,Q\)= \bigcup_{k\nl{}0}\Diff_k^{\(+\)}\(P,Q\)$. \Proposition\roster \item If $\De_1\in \Diff_k\(P,Q\)$, $\De_2\in \Diff_l\(Q,R\)$, $P,Q,R$ $A$-modules, then $\De_2\com\De_1\in\Diff_{k+l}\(P,R\)$. \item The maps $\Diff_k\(P,Q\)\to\Diff_k^+\(P,Q\)$ and $\Diff_k^+\(P,Q\)\to \Diff_k\(P,Q\)$ generated by the identity map are \do's of order $\ng{}k$. \item There exists a canonical isomorphism $$\Diff_k^+\(P,Q\)\to \Hom_A\(P,\Diff_k^+\(Q\)\),$$ where $\Diff_k^+\(Q\)=\Diff_k^+\(A,Q\)$. To every \do{} $\De\:P\to Q$ corresponds the homomorphism $\ph_{\De}\in\Hom_A\(P, \Diff_k^+\(Q\)\)$, $\ph_{\De}\(p\)\(a\)=\De\(pa\)$ under this isomorphism. The inverse mapping takes a homomorphism $\ph\:P\to\Diff_k^+\(Q\)$ to an operator $\cD_k\com\ph$, where $\cD_k\:\Diff_k^+\(Q\)\to Q$ is a \do{} of order $\ng{}k$ defined by the formula $\cD_k\(\na\)=\na\(1\)$, $\na\in\Diff_k^+\(Q\)$. \endroster\endProposition \Proofetc consists of a series of automatic verifications. \endProof This proposition has the following: \Corollary The commutative diagram $$\CD \Diff_k^+\(\Diff_l^+\(P\)\) @>\cD_k>> \Diff_l^+\(P\) \\ @Vc_{k,l}VV @VV\cD_lV \\ \Diff_{k+l}^+\(P\) @>\cD_{k+l}>> P \endCD$$ uniquely defines the operator $c_{k,l}$, which is said to be glueing operator. \endCorollary \Definition A $k$-multilinear over $K$ mapping $\na\:A\x\ldots\x A\to P$, $P$ being an $A$-module, is said to be a \ if the following conditions hold: \roster\item"{1.}" $\na\(a_1,\ldots,a_i,a_{i+1},\ldots,a_k\)= -\{a_i,a_{i+1}\}\na\(a_1,\ldots,a_{i+1},a_i,\ldots,a_k\)$ \item"{2.}" $\na\(a_1,\ldots,a_{i-1},ab,a_{i+1},\ldots,a_k\)=\> \{\na,a\}\{a_1\ldots a_{i-1},a\}a\na\(a_1,\ldots,b,\ldots,a_k\)+\> \{\na,b\}\{a_1\ldots a_{i-1}a,b\}b\na\(a_1,\ldots,a,\ldots,a_k\)$ \endroster\endDefinition The set of all skew multiderivations is an $A$-module denoted by $\Der_k\(P\)$. Obviously $\Der_1\(P\)$ is a submodule of $\Diff_1\(A,P\)$. \ $S\:\Der_k\(\Diff_l^+\(P\)\)\to\Der_{k-1}\(\Diff_{l+1}^+\(P\)\)$ is defined by the formula $$S\(\na\)\(a_1,\ldots,a_{k-1}\)\(a\)=\na\(a_1,\ldots,a_{k-1},a\)\(1\),$$ $\na\in\Der_k\(\Diff^+\(P\)\)$. \Proposition\roster \item $S$ is a \do{} of order $\ng 1$; \item $S^2=0$. \endroster\endProposition \Proofetc is straightforward. \endProof The complex $0@<<. \Subsection{}\label{rep} The operations $Q\mapsto\Der_k\(Q\)$, $Q\mapsto\Diff\(P,Q\)$, and $Q\mapsto\Diff^+\(Q,P\)$ are functors from the category of all $A$-modules $\cM{}od_A$ to itself. We have seen that the latter functor is representable. The following proposition shows that two others functors are also representable. \xProposition{(see \Cite[al], \Cite[GrAv], \Cite[MMV])} There exists a module $\La^k$ \rom{(}\resp$\J^k\(P\)$\rom{)}), which is called the module of $k$-form \rom{(}\resp$k$-jets\rom{)} over $A$, such that the functor $Q\mapsto\Der_k\(Q\)$ \rom{(}\resp$Q\mapsto\Diff_k\(P,Q\)$\rom{)} is isomorfic to the functor $Q\mapsto\Hom_A\(\La_k,Q\)$ \rom{(}\resp$Q\mapsto\Hom_A\(\J^k\(P\),Q\)$\rom{)}. \endProposition Let us denote by $j_k=j_k\(P\)\:P\to\J^k\(P\)$ the \do{} of order $\ng{}k$ that corresponds under the isomorphism $\Diff_k\(P,\J^k\(P\)\)=\Hom_A\(\J^k\(P\), \J^k\(P\)\)$ to the identical map $id_{\J^k\(P\)}$. Proposition \labelref{rep} implies that the operator $j_k$ is universal, \ie for every \do{} $\De\in\Diff_k\(P,Q\)$ there exists a unique homomorphism $\ps_{\De}\:\J^k\(P\)\to Q$ such that $\De=\ps_{\De}\com{}j_k$. Now let $\cM$ be a subcategory of category $\cM{}od_A$ of all $A$-modules that is closed under the action of the above-discussed functors. Then it is quite natural to ask if these functors are representable in $\cM$. \Example The most important example of the closed (in the above sense) category is that of geometrical modules $\cM{}od_A^g$. A module $P$ is called geometrical if $\widetilde P=\bigcap_{\wp,k}\wp^kP=0$, where intersection is taken over all powers of prime ideals of $A$. There is the geometrization functor $P\mapsto P/\widetilde P$ from $\cM{}od_A$ to $\cM{}od_A^g$. It can easily be checked that the functors $\Der_k$ and $\Diff_k\(P,\cdot\)$ are representable in $\cM{}od_A^g$, the geometrization functor transforming the representing objects in $\cM{}od_A$ into the corresponding representing objects in $\cM{}od_A^g$. \endExample \Subsection{} A natural transformation of the functors $\Der_k$, $\Diff_k$, and their compositions by duality gives rise to operators between the corresponding representing objects. \xExample{1} The natural inclusion $\Der_{k+l}\(P\)\to\Der_k\(\Der_l\(P\)\)$ defines the wedge product of forms over $A$: $\La^k\ox\La^l\to\La^{k+l}$. \endExample \xExample{2} The Spencer operator $S\:\Der_k\(P\)\to\dot{\Der}_{k-1}\(\Diff_1^+\(P\)\)$, where the superscribed dot means that the $K$-module $\Der_{k-1}\(\Diff_1^+\(P\)\)$ is supplied with $A$-module structure by putting $a\th=\Der_{k-1}\(\Diff_1^+\(a\)\)\th$, $\th\in\Der_{k-1}\(\Diff_1^+\(P\)\)$, induces the homomorphism $\J^1\(\La^{k-1}\)\to\La^k$. The composition of $\La^{k-1}@>j_1>>\J^1\(\La^{k-1}\)@>>>\La^k$ is called \ operator and is denoted by $d\:\La^{k-1}\to\La^k$. Using the fact that $S^2=0$, one can easily prove that $d^2=0$. The complex $0@>>>A@>d>>\La^1@>d>>\La^2@>d>>\ldots$ is said to be the \ of the algebra $A$. \endExample \Subsection{} The above described algebraic formalism can be realized geometrically, the algebra $A$ being the algebra $C^\infty\(M\)$ of smooth real functions on a supermanifold $M$ (for the supergeometry see, \eg \Cite[Lei], \Cite[BerLei], \Cite[Manin1], \Cite[Ber]). In this situation it may be shown in the same way as in non-graded case that the standard notions of differential operator, forms, jets, \etc coincide with the ones introduced above. Having this in mind, in the next section we shall illustrate constructions under consideration by giving their local coordinate description. % \Section{Adjoint Operators and Berezinian} \Subsection{} Given an $A$-module $P$, consider the complex of homomorphisms $$0@>>>\Diff^+\(P,A\)@>w>>\Diff^+\(P,\La^1\)@>w>>\Diff^+\(P,\La^2\)@>w>>\ldots ,\eq cPen $$ where $w\(\na\)=d\com\na\in\Diff^+\(P,\La^k\)$, $\na\in\Diff^+\(P,\La^{k-1}\)$. Let us denote the cohomology module in a term $\Diff^+\(P,\La^n\)$ by $\ah{P}_n$, $n\nl 0$. Every \do{} $\De\:P\to Q$ generates the natural map of the complexes: $$\CD \ldots@>>>\Diff^+\(Q,\La^{k-1}\)@>w>>\Diff^+\(Q,\La^{k}\)@>>>\ldots \\ @. @V\widetilde{\De}VV @V\widetilde{\De}VV @. \\ \ldots@>>>\Diff^+\(P,\La^{k-1}\)@>w>>\Diff^+\(P,\La^{k}\)@>>>\ldots, \\ \endCD$$ where $\widetilde{\De}\(\na\)=\{\De,\na\}\na\com\De\in\Diff^+\(P,\La^k\)$, $\na\in\Diff^+\(Q,\La^k\)$. \Definition The operator $\De^*_n\:\ah{Q}_n\to\ah{P}_n$ induced by $\widetilde{\De}$ is called the \. \endDefinition Below we assume that an integer $n$ is fixed and omit the corresponding index. \Proposition\roster \item $\De^*$ has the same grading as $\De$. \item If $\De\in\Diff_k\(P,Q\)$ then $\De^*\in\Diff_k\(\ah{Q},\ah{P}\)$. \item For all $\De_1\in\Diff\(P,Q\)$ and $\De_2\in\Diff\(Q,R\)$ we have $$\(\De_2\com\De_1\)^*=\{\De_2,\De_1\}\De_1^*\com\De_2^*.$$ \endroster\endProposition \Proof\roster \runinitem Obvious. \item Denote by $\[\na\]$ the cohomologous class of an operator $\na\in\Diff^+\(P,\La^n\)$, $w\(\na\)=0$. Then $\De^*\(\[\na\]\)=\{\De,\na\}\[\na\com\De\]$ and we have \> $\de_a\(\De^*\)\(\[\na\]\)=\{a,\De^*\}\De^*\(a\[\na\]\)-a\De^*\(\[\na\]\)=\> \{a,\De^*\}\{a,\na\}\{\De,\na\com a\}\[\na\com a\com\De\]-\{\De,\na\} \{a,\na\com\De\}\[\na\com\De\com a\]=\> \(a\com\De\)^*\(\[\na\]\)-\{a,\De\} \(\De\com a\)^*\(\[\na\]\)=-\de_a\(\De\)^*\(\[\na\]\),$ \> \ie $\de_a\(\De^*\)= -\de_a\(\De\)^*$. Thus $\de_{a_0,\ldots,a_k}\(\De^*\)=\(-1\)^{k+1} \de_{a_0,\ldots,a_k}\(\De\)^*=0$. \item $\(\De_2\com\De_1\)^*\(\[\na\]\)=\{\De_2\com\De_1,\na\} \[\na\com\De_2\com\De_1\]=\>\{\De_2,\na\}\{\De_2,\De_1\}\De_1^* \(\[\na\com\De_2\]\)=\{\De_2,\De_1\}\De_1^*\(\De_2^*\(\[\na\]\)\)$. \endroster\endProof Let us consider some examples of adjoint operators. \xExample{1} Let $a\:P\to P$ be the operator of multiplying by $a\in A$. Then $a^*\(\[\na\]\)=\{a,\na\}\[\na\com a\]=a\[\na\]$, \ie $a^*=a$. \endExample \xExample{2} Let $p\:A\to P$ be the operator $p\(a\)=pa$, $a\in A$, $p\in P$. Then $p^*\(\[\na\]\)=\{p,\na\}\[\na\com p\]$, $p^*\in\Hom_A\(\ah{P},\ah{A}\)$. Thus we have a natural pairing $\p(\cdot\,,\cdot)\:P\ox\ah{P}\to \ah{A}$, $\p(p,\ah{p})=p^*\(\ah{p}\)$, $\ah{p}\in\ah{P}$. \endExample \xExample{3. Berezinian and Integral forms} Let $\ldots@>>>P_{k-1}@>\De_k>>P_k@>>>\ldots$ be a complex of \do's. Since $\De_k^*\com\De_{k+1}^*=\{\De_k,\De_{k+1}\}\(\De_{k+1}\com\De_k\)^*=0$, we get a complex $\ldots@<<<\ah{P}_{k-1}@<\De_k^*<<\ah{P}_k@<<<\ldots$, which is called dual to given one. The complex dual to the de~Rham complex is said to be the \ and denote by $$0@<<<\Si_0@<\de<<\Si_1@<\de<<\ldots,$$ where $\Si_i=\ah{\La^i}$, $\de=d^*$. The module $\Si_0=\ah{A}$ is called the \ and will be denoted by $B$. \endExample The \do's $\cD\:\Diff^+\(\La^k\)\to\La^k$ induce the cohomology map: $\int\:B\to\Hm^n\(\La^*\)$, so that to any element $\om\in B$ (volume form) corresponds the $n$-th de~Rham cohomology class $\int\om$. This is an algebraic version of the integration operation. Clearly, $\int\[\na\]=\na\(1\)\mod{d\La^{n-1}}$, $\na\in\Diff\(A,\La^n\)$. \2\Proposition $\int\de\om=0$, where $\om\in\Si_1$. \endProposition \Proof Suppose $\om=\[\na\]$, then $\de\om=\[\na\com d\]$. Therefore $\int\de\om=\[\na\com d\(1\)\]=0$. \endProof \2\xProposition{(``Integration by parts'')} For any \do{} $\De\:P\to Q$ and $p\in P$, $\ah{q}\in\ah{Q}$, we have $$\int\p(\De\(p\),\ah{q})=\{\De,p\}\int\p(p,\De^*\(\ah{q}\))$$ \endProposition \Proof Suppose $\ah{q}=\[\na\]$, $\na\:Q\to\La^n$. Then $\int\p(\De\(p\),\ah{q})=\int\{\De\(p\),\na\}\[\na\com\De\(p\)\] \allowmathbreak=\int\{\De\(p\),\na\}\[\na\com\De\com p\]= \int\{\De,\na\}\{\De,p\}\p(p,\[\na\com\De\])= \{\De,p\}\int\p(p,\De^*\(\ah{q}\))$. \endProof \Subsection{Coordinates} Let $M$ be a smooth supermanifold of dimension $s|t$, $G=\bZ_2$, $K=\bR \text{ or }\bC$, $A=C_K^\infty\(M\)$, $P=\Ga\(\al\)$ and $Q=\Ga\(\be\)$ the modules of smooth sections of vector bundles over $M$. Suppose $x=\(y_i,\xi_j\)$, $i=1,\ldots,s$, $j=1,\ldots,t$, $x_1=y_1,\ldots,x_s=y_s$, $x_{s+1}=\xi_1, \ldots,x_{s+t}=\xi_t$ is a coordinate system on a domain $\cU\subset M$. First of all let us calculate the Berezinian, \ie the cohomology of complex \eqref{cPen} for $P=A$. \xTheorem{(\Cite[Pen])}\roster \runinitem $\ah{A}_n=0\for n\ne s$. \item $\ah{A}_s$ is the module of sections for the bundle of volume forms $\Ber\(M\)$\footnote{Recall that locally sections of $\Ber\(M\)$ are written in the form $f\(x\)\text{\bf D}\(x\)$, where $f\in C^{\infty}\(\cU\)$ and {\bf D} is a basis local section that is multiplied by the Berezin determinant of the Jacobi matrix under the change of coordinates. The Berezin determinant of an even matrix $\pmatrix A&B\\C&D\endpmatrix$ is equal to $\det\(A-BD^{-1}C\)\(\det D\)^{-1}$.}.\endroster \endTheorem \Proof The assertion is local, so we can consider the domain $\cU$ and split the complex $\Diff^+\(\La^*\)$ in a tensor product of complexes $\Diff^+\(\La^*\)_{even}\ox\Diff^+\(\La^*\)_{odd}$, where $\Diff^+\(\La^*\)_{even}$ is complex \eqref{cPen} on the underlying even domain of $\cU$ and $\Diff^+\(\La^*\)_{odd}$ is complex \eqref{cPen} for the Grassmann algebra in variables $\xi_1,\ldots,\xi_t$. It is known that $\Hm^i\(\Diff^+\(\La^*\)_{even}\)=0$ for $i\ne s$ and $\Hm^i\(\Diff^+\(\La^*\)_{even}\)=\La_u^s$, where $\La_u^s$ is the module of $s$-form on the underlying even domain of $\cU$ (see \xCite[C-art|section 2]). To compute the cohomology of $\Diff^+\(\La^*\)_{odd}$ consider the quotient complexes $$0@>>>\Smbl_k\(A\)_{odd}@>>>\Smbl_{k+1}\(\La^1\)_{odd}@>>>\ldots,$$ where $\Smbl_k\(P\)_{odd}=\Diff_k^+\(P\)_{odd}/\Diff_{k-1}^+\(P\)_{odd}$. An easy calculation shows that these complexes are the Koszul complexes, hence $\Hm^i\(\Diff^+\(\La^*\)\)_{odd}=0$ for $i>0$ and $\Hm^0\(\Diff^+\(\La^*\)\)$ is a module of rank 1. Therefore $\ah{A}_i=\Hm^i\(\Diff^+\(\La^*\)\)=0$ for $i\ne s$ and the only operators that represent non-trivial cocycles have the form $f\(y,\xi\)dy_1\wedge\ldots\wedge dy_s\frac{\dd^t}{\dd\xi_1\cdots\dd\xi_t}$. To complete the proof it remains to check that $\ah{A}_s$ is precisely $\Ber\(M\)$, \ie that changing coordinates we obtain: $$fdy_1\wedge\ldots\wedge dy_s\frac{\dd t}{\dd\xi_1\ldots\xi_t}=f\Ber J\(\frac{x}{z}\)dv_1\wedge\ldots \wedge dv_s\frac{\dd t}{\dd\et_1\ldots\et_t}+T,$$ where $z=\(v_i,\et_j\)$ is a new coordinate system on $\cU$, $\Ber$ denotes the Berezin determinant, $J\(\frac{x}{z}\)$ is the Jacobi matrix, $T$ is cohomologous to zero. This is an immediate consequence of the following: \Claim If $X=\pmatrix A&B\\C&D\endpmatrix$ and $X^{-1}= \pmatrix \widetilde{A}&\widetilde{B}\\\widetilde{C}&\widetilde{D}\endpmatrix$ are mutually inverse matrices written in the standard format, then $\Ber X=\det A\cdot\det\widetilde{D}$. \endClaim \Proof Obviously, $A\widetilde{B}+B\widetilde{D}=0$ and $C\widetilde{B}+D \widetilde{D}=1$, whence $D=\widetilde{D}^{-1}+CA^{-1}B$. Therefore $$\pmatrix A&B\\C&D\endpmatrix=\pmatrix A&B\\C&\widetilde{D}^{-1}+CA^{-1}B \endpmatrix=\pmatrix 1&0\\CA^{-1}&1\endpmatrix\pmatrix A&B\\0&\widetilde{D}^{-1}\endpmatrix$$ and we get $$\Ber\pmatrix A&B\\C&D \endpmatrix=\Ber\pmatrix 1&0\\CA^{-1}&1\endpmatrix\Ber\pmatrix A&B\\0&\widetilde{D}^{-1}\endpmatrix=\det A\cdot\det\widetilde{D}.$$ \doubleendProof Now let us consider the coordinate expression for adjoint operator. Suppose $\De\in\Diff_k\(A,A\)$ is a scalar operator: $\De=\sum_{\si}a_{\si}\frac{\dd^{|\si|}}{\dd x_{\si}}$, where $\si=\(i_1,\ldots,i_r\)$ is an ordered set of integers $1\ng i_j\ng s+t$, $|\si|=r$, $\frac{\dd^{|\si|}}{\dd x_{\si}}=\frac{\dd^{|\si|}}{\dd x_{i_1}\ldots\dd x_{i_r}}$. Then we have $$\De^*=\sum_{\si}\(-1\)^{\Th}\frac {\dd^{|\si|}}{\dd x_{\si}}\com a_{\si},$$ where $\Th=|\si|+\widetilde{a_{\si}}\sum_{j=1}^{|\si|}\widetilde{x_{i_j}}+\sum_{1\ng jFrom now onwards we assume that the module $\La^1$ is of finite type and projective. This implies that the same true for the modules $\La^k$ and $\J^k\(A\)$ and, also, that for any projective module the Spencer $\Diff$-complex is exact (see\Cite[GrAv]). In this case it is expedient to consider another variant of construction of adjoint operator. Set $\ao{P}=\Hom\(P,B\)$. Obviously, $\Si_i=\ah{\La^i}=\ao{\(\La^i\)}=\Der_i\(B\)$, $\ah{\J^k\(A\)}=\ao{\J^k\(A\)}=\Diff_k\(A,B\)$. \Definition For an operator $\De\in\Diff_k\(A,B\)$ we define the operator $\ao{\De}\:A\to B$, $\ao{\De}\(a\)=\{\De,a\}j_k^*\(a\De\)$, $a\in A$, which, for economy of language, will be called \. \endDefinition \label{pollino} \Proposition\roster \runinitem The grading of $\ao{\De}$ is equal to the one of $\De$. \item If $\De\in\Diff_k\(A,B\)$ then $\ao{\De}\in\Diff_k\(A,B\)$. \item $\ao{\om}=\om$, $\om\in B=\Diff_0\(A,B\)$. \item If $X\in\Der_1\(B\)$ then $X+\ao{X}\in\Diff_0\(A,B\)=B$ and $X+\ao{X}=\de\(X\)$. \item $\ao{\(a\De\)}=\{a,\De\}\ao{\De}\com a$, $\De\in\Diff\(A,B\)$, $a\in A$. \item If $\De\(a\)=\[\na_a\]$, $\De\in\Diff\(A,B\)$, $a\in A$, $\na_a\in\Diff^+ \(\La^n\)$, then $\ao{\De}\(a\)=\[\sq_a\]$, where $\sq_a\(a'\)=\{a,a'\}\na_{a'}\(a\)$. \item $\ao{\(\ao{\De}\)}=\De$. \endroster\endProposition\label{prop} \Proof\roster \runinitem Obvious. \item $\de_a\(\ao{\De}\)\(a'\)=\{a,\ao{\De}\}\ao{\De}\(aa'\)-a\ao{\De}\(a'\)=\> \{\ao{\De},a'\}j_k^*\(aa'\De\)-\{\ao{\De},a'\}aj_k^*\(a'\De\)=\>\{\ao{\De},a'\} \de_a\(j_k^*\)\(a'\De\)$, so $\de_{a_0,\ldots,a_k}\(\ao{\De}\)\(a'\)=\> \{\ao{\De},a'\}\de_{a_0,\ldots,a_k}\(j_k^*\)\(a'\De\)=0$. \item Obvious. \item Clearly, $\de_a\(j_1\)=j_1\(a\)-aj_1\(1\)\in\J^1\(A\)$, hence $$\(\de_a\(j_1\)\)^*\(\De\)=\{a,\De\}\De\(a\)-a\De\(1\)=\de_a\(\De\)\(1\), \qquad\De\in\Diff_1\(A,A\).$$ Thus $\de_a\(X+\ao{X}\)\(1\)=\de_a\(X\)\(1\)+\de_a\(j_1^*\)\(X\)= \de_a\(X\)\(1\)-\de_a\(j_1\)^*\(X\)\allowmathbreak=0$. Further, $\de\(X\)=j_1^*\(\ga^*\(X\)\)$, where $\ga\:\J^1\(A\)\to\La^1$ is the natural projection. Obviously, $\ga^*\:\Der_1\(B\)\to\Diff_1\(A,B\)$ is the natural inclusion, so that $\de\(X\)=\ao{X}\(1\)=X+\ao{X}$. \item $\ao{a\De}\(a'\)=\{a\De,a'\}j_k^*\(a'a\De\)=\{a\De,a'\}\{a'a,\De\} \ao{\De}\(a'a\)=\>\{a,\De\}\(\ao{\De}\com a\)\(a'\)$. \item Obvious. \item Let $\De\(a\)=\[\na_a\]$ and $\ao{\De}\(a\)=\[\sq_a\]$. Then $\ao{\(\ao{\De}\)}\(a\)=\[\widetilde{\sq_a}\]$, where $\widetilde{\sq_a}\(a'\)=\{a,a'\}\sq_{a'}\(a\)=\na_a\(a'\)$, \ie $\ao{\(\ao{\De}\)}\(a\)=\[\na_a\]=\De\(a\)$. \endroster\endProof Now let us define the adjoint operator $\ao{\De}$ in the general case when $\De\in\Diff\(P,\ao{Q}\)$, the $P$ and $Q$ being $A$-modules. As in non-graded case consider the family of operators $\De\(p,q\)\in\Diff\(A,B\)$, $p\in P$, $q\in Q$, $\De\(p,q\)\(a\)=\{p,a\}\{q,a\}\p(\De\(ap\),q)$, $a\in A$; the brackets $\p(\cdot\,,\cdot)$ denote the natural pairing $\ao{Q}\ox Q\to B$. Then set $\p(\ao{\De}\(q\),p)=\{q,p\}\ao{\De\(p,q\)}\(1\)$, $\ao{\De}\in\Diff\(Q,\ao{P}\)$. \Proposition\roster \runinitem For any $\De\in\Diff_k\(P,\ao{Q}\)$ the operator $\ao{\De}$ is well-defined and of order $\ng{}k$. \item For every $\De\in\Diff\(P,\ao{Q}\)$ we have $\ao{\(\ao{\De}\)}=\De$. \item If the modules $P$, $Q$, $\ao{Q}$ are projective, then for $\De\in\Diff\(P,\ao{Q}\)$ the adjoint operator $\ao{\De}\:Q\to\ao{P}$ coincides with the composition of $Q@>>>\ao{\ao{Q}}@>\De^*>>\ao{P}$, where $Q\to\ao{\ao{Q}}$ is the natural homomorphism. \endroster\endProposition \Proof Statements \therosteritem1 and \therosteritem2 are straightforward. \roster\item[3] Take $\De\:P\to\ao{Q}$, $p\in P$, $q\in Q$. We have $\De=\ps_{\De}j_k$, so $\p(\De^*\(q\),p)=\p(j_k^*\ps_{\De}^*\(q\),p)= j_k^*\(\ps_{\De}^*\(q\)\com p\)=\ao{\(\ps_{\De}^*\(q\)\com p\)}\(1\)= \{q,p\}\ao{\De\(p,q\)}\(1\)$ \endroster\endProof Now let us consider one more example of adjoint operators. \Subsection{Example: The Spencer Operators} The complex $$0@>>>P@>j>>\JI\(P\)@>s>>\JI\(P\)\ox\La^1@>s>> \JI\(P\)\ox\La^2@>s>>\ldots,$$ where $s\(j\(p\)\ox\om\)=j\(p\)\ox d\om$, is called the Spencer $\J$-complex (for details see \Cite[GrAv]). Note that $s$ is a \do{} of order $\ng{}1$. Let us compute the dual complex. Clearly, for the projective module $P$ we have $\ah{\JI\(P\)\ox\La^i}=\ao{\(\JI\(P\)\ox\La^i\)}= \Der_i\(\Hom\(\JI\(P\),B\)\)=\Der_i\(\Diff\(P,B\)\)=\Der_i\(\Diff^+\(\ao{P} \)\)$. To describe $s^*$ we need the following remark. Let $\De\(P\)\:\F\(P\)\to\G\(P\)$ be a \ \do, $\F$ and $\G$ functors on a category of projective modules over $A$. For any functors $\F$ denote by $\dot{\F}\(P\)$ the abelian group $\F\(P\)$ supplied with $A$-module structure induced by the $A$-module structure in $P$. Then $\De$ generates the natural homomorphism $\dot{\De}\:\dot{\F}\to\dot{\G}$. \Lemma $\(\De^*\)^{\tsize\cdot}=\(\dot{\De}\)^*$ \endLemma \Proofetc is trivial. \endProof The lemma immediately implies that the complex dual to the Spencer $\J$-complex for module $P$ is the Spencer $\Diff$-complex for module $\ao{P}$. On the other hand we have $\ah{\JI\(P\)\ox\La^k}=\Hom\(\JI\(P\),\Der_k\(B\)\)= \Diff\(P,\Si_k\)$ and the operator $s^*\:\Diff\(P,\Si_k\)\to \Diff\(P,\Si_{k-1}\)$ has the form $s^*\(\na\)=\de\com\na$, $\na\in\Diff\(P,\Si_k\)$; $j^*\(\na\)=\ao{\na}\(1\)$. Bringing all this together we can state the following: \Theorem For a projective module $P$ there is an isomorphism of complexes: $$\minCDarrowwidth{0.7true cm}\CD 0@<<<\ao{P}@<\cD<<\Diff^+\(\ao{P}\)@\Der_k\(\com\)>>\Der_k\(\Diff\(P,B\)\)@>>> \Diff\(P,\Der_k\(B\)\)@>>>\Diff\(P,\Si_k\).$$ \endTheorem \label{2comp} This theorem has the following: \xCorollary{(Green's Formula)} If the Spencer $\Diff$-cohomology of the Berezinian $B$ in the term $\Diff^+\(B\)$ is trivial, then for any $\De\in\Diff\(P,\ao{Q}\)$, $p\in P$, $q\in Q$, we have $$\p(\De\(p\),q)- \{\De,p\}\p(p,\ao{\De}\(q\))=\de G,$$ where $G\in\Si_1$ is an integral 1-form. \endCorollary \Proof Suppose $\na\in\Diff^+\(B\)$; then $\(\na-\na\(1\)\)\in\ker\cD$, hence there exists $\sq\in\Der_1\(\Diff^+\(B\)\)$ such that $S\(\sq\)=\na-\na\(1\)$. It follows from the theorem that $\na^*\(1\)-\na\(1\)=\ps\com S\(\sq\)=\om\(\ps\(\sq\)\)$. Therefore $\na^*\(1\)-\na\(1\)=\de G$, where $G=\ps\(\sq\)\(1\)$. Letting $\na=\De\(p,q\)$, we get the Green formula. \endProof \Remark{}\label{Gr} If $B$ is projective then there exists an $A$-homomorphism $\ka\:\ker\cD\to \Der_1\(\Diff^+\(B\)\)$, such that $S\com\ka=id$, and we can take $\sq=\ka\( \De-\De\(1\)\)$ and, therefore, $G=G_{\ka}=\ps\(\ka\(\De\(p,q\)-\p(\De\(p\),q) \)\)\(1\)$. Since the Spencer complex of $B$ is exact, for any two homomorphisms $\ka$ and $\ka'$ one can find a homomorphism $f\:\ker\cD\to\Der_2\(\Diff^+\(B\)\)$ such that $\ka-\ka'=S\com f$. Hence $G_{\ka}-G_{\ka'}=\de F$, where $F=\ps\(f\( \De\(p,q\)-\p(\De\(p\),q)\)\)\(1\)$. \endRemark \Subsection{} In this subsection we describe a spectral sequence, which establishes the relationship between the de~Rham cohomology and the homology of the complex of integral forms. \xProposition{(Poincar\'e duality)} There is a spectral sequence, $\(E^r_{*,*},d^r_*\)$, with $$E^2_{p,q}=\Hm_p\(\(\Si_*\)_{-q}\),$$ the homology of complexes of integral forms, and converging to the de~Rham cohomology $\Hm\(\La^*\)$. \endProposition \Proof Let $K_{p,q}=\Der_p\(\Diff^+\(\La^{-q}\)\)$, $d'$ be the Spencer operator $d'\:K_{p,q}\to K_{p-1,q}$, and $d''=\(-1\)^p\Der_p\(\Diff^+\(d\)\)$, $d''\:K_{p,q}\to K_{p,q-1}$. Then $\{K_{*,*},d',d''\}$ is a double complex. Obviously, $\Hm^I\(K\)=\Hm\(K_{*,*},d'\)=\La^{-q}$ for $p=0$ and 0 for $p\ne0$. Therefore in the second spectral sequence ${}^{II}E^2_{p,q}={}^{II}\Hm_{p,q} \({}^I\Hm\(K\)\)=\Hm_{p,q}\({}^I\Hm_{*,*}\(K\),d''\)=\Hm^{-q}\(\La^*\)$ for $p=0$ and ${}^{II}E^2_{p,q}=0$ for $p\ne0$. Thus the second spectral sequence converge to the de~Rham cohomology. From the first spectral sequence we get ${}^IE^2_{p,q}={}^I\Hm_{p,q}\({}^{II}\Hm\(K\)\)= {}^I\Hm_{p,q}\(\Hm\(K_{*,*},d''\)\)=\Hm_{p,q}\(\Der_*\(B\),d'\)= \Hm_p\(\(\Si_*\)_{-q}\)$. \endProof \Corollary If $\ah{A_i}=0$ for all $i\ne n$, then $\Hm_i\(\Si_*\)=\Hm^{n-i}\(\La^*\)$. \endCorollary \Section{Quadratic Lagrangians, the Euler Operator, and the Noether theorem} In this section $P$ and $Q$ are projective modules. \Subsection{} Consider the complex $$0@<<<\Diff^{sym}_{\(2\)}\(P,\ao{P}\)@<\mu<< \Diff^{sym}_{\(2\)}\(P,B\)@<\om<<\Diff^{sym}_{\(2\)}\(P,\Si_1\)@<\om<< \ldots,\eq varcom $$ where $\Diff^{sym}_{\(2\)}\(P,Q\)$ denotes the submodule of $\Diff\(P, \Diff\(P,Q\)\)$ consisting of all symmetric bidifferential $Q$-valued operators $\na\(p_1\)\(p_2\)=\{p_1,p_2\}\allowmathbreak\na\(p_2\)\(p_1\)$, $\na\in\Diff\(P,\Diff\(P,Q\)\)$, $\Diff^{sym}\(P,\ao{P}\)$ is the module of all self-adjoint operators from $\Diff\(P,\ao{P}\)$, $\om\(\na\)=\de\com\na$, $\na\in\Diff^{sym}_{\(2\)}\(P,\Si_k\)$, $k>0$, and $\mu\(\na\)\(p\)= \ao{\(\na\(p\)\)}\(1\)$, $p\in P$. \Theorem This complex is acyclic. \endTheorem\label{th} \Proof From theorem \labelref{2comp} it follows easily that the complex $$0@<<<\Diff\(P,\ao{P}\)@<\widetilde{\mu}<<\Diff\(P,\Diff\(P,B\)\) @<\widetilde{\om}<< \Diff\(P,\Diff\(P,\Si_1\)\)@<\widetilde{\om}<<\ldots,\eq c $$ where $\widetilde{\om}\(\na\)=\de\com\na$, $\widetilde{\mu}\(\na\)\(p\)= \ao{\(\na\(p\)\)}\(1\)$, is acyclic. To prove the theorem it is sufficient to show that this complex split into the symmetric and the skew-symmetric parts. To do this let us check that the involution $\rh$ of complex \eqref{c}, $\rh\(\na\)\(p_1\)\(p_2\)=\{p_1,p_2\} \na\(p_2\)\(p_1\)$, $\na\in\Diff\(P,\Diff\(P,\Si_k\)\)$ and $\rh\(\na\)= \ao{\na}$, $\na\in\Diff\(P,\ao{P}\)$, is an authormorphism of this complex. The fact that $\widetilde{\om}\com\rh=\rh\com\widetilde{\om}$ is obvious. Let us verify that $\widetilde{\mu}\com\rh=\rh\com\widetilde{\mu}$. Take $\De\in\Diff\(P,\Diff\(P,B\)\)$ and let $\de\(p_1\)\(p_2\)=\[\na_{p_1,p_2}\]$, $\na_{p_1,p_2}\in\Diff^+\(\La^n\)$. It follows from proposition \labelref{prop} that $\p(\widetilde{\mu}\(\De\)\(p_1\),p_2)=\[\sq\]$, where $\sq\in\Diff^+\(\La^n\)$, $\sq\(a\)=\{p_2,a\}\na_{p_1,ap_2}\(1\)$, $p_1,p_2\in P$. Therefore $\p(\rh\widetilde{\mu}\(\De\)\(p_1\),p_2)=\p(\ao{\widetilde{\mu}\(\De\)}\(p_1\), p_2)=\{p_1,p_2\}\[\sq'\]$, where $\sq'\(a\)=\{p_1,a\}\{p_2,a\}\na_{ap_2,p_1}\(1\)$. On the other hand $\p(\widetilde{\mu}\rh\(\De\)\(p_1\),p_2)=\[\sq''\]$, where $\sq''\(a\)=\{p_2,a\}\na'_{p_1,ap_2}\(1\)$, $\p(\rh\(\De\)\(p_1\),p_2)=\[\na'_{p_1,p_2}\]$. Clearly, $\na'_{p_1,p_2}= \{p_1,p_2\}\na_{p_2,p_1}$, hence $\sq''\(a\)=\{p_2,a\}\{p_1,ap_2\}\na_{ap_2,p_1}\(1\)$. \endProof \Subsection{Lagrangian Formalism} \Definition The space $\cL ag\(P\)$ of \ on $P$ is defined as the cokernel of the operator $\om\:\Diff^{sym}_{\(2\)}\(P,\Si_1\)\to \Diff^{sym}_{\(2\)}\(P,B\)$. An operator $L\in\Diff^{sym}_{\(2\)}\(P,B\)$ is called the \ of quadratic Lagrangian $\cL$ if $\cL=L\mod\im\om$. \endDefinition >From theorem \labelref{th} we see that the operator $\mu$ gives rise to an isomorphism of $\cL ag\(P\)$ to the submodule of the module $\Diff\(P,\ao{P}\)$ consisting of self-adjoint operators. This isomorphism is said to be the \ and denoted by $\cE$. \Subsection{Conservation laws} Let $\De\in\Diff_k\(P,Q\)$ and $E=\{p\in P|\De\(p\)=0\}$ is the corresponding equation. The operator $\De$ generates the chain map $\Om_{\De}$ of the complexes \eqref{varcom}: $$\CD 0@<<<\Diff\(Q,B\)@<\om<<\Diff\(Q,\Si_1\)@<\om<<\Diff\(Q,\Si_2\)@<\om<<\ldots\\ @. @VV\Om_{\De}V @VV\Om_{\De}V @VV\Om_{\De}V @. \\ 0@<<<\Diff\(P,B\)@<\om<<\Diff\(P,\Si_1\)@<\om<<\Diff\(P,\Si_2\)@<\om<<\ldots \endCD$$ \<{\rm(}Linear{\rm)} conservation laws> for the equation $E$ are defined by analogy with non@-graded case (see \Cite[C-art]) as classes of 1-dimensional homology of the complex $\coker\Om_{\De}$. Let us denote the group of linear conservation laws for the equation $\De=0$ by $\Cl\(\De\)=\Hm_1\(\coker\Om_{\De}\)$. The following theorem and the corollary describe the group $\Cl\(\De\)$. \Theorem There exists an exact sequence $$0@>>>\Hm_1\(\im\Om_{\De}\)@>>> \Hm_0\(\ker\Om_{\De}\)@>>>\ker\De^*@>>>\Cl\(\De\)@>>>0.$$ \endTheorem\label{exseq} \Proof It follows from theorem \labelref{th} that exact homology sequences corresponding to the short exact sequences of complexes $$0@>>>\ker\Om_{\De}@>>>\Diff\(Q,\Si_*\)@>>>\im\Om_{\De}@>>>0$$ $$0@>>>\im\Om_{\De}@>>>\Diff\(p,\Si_*\)@>>>\coker\Om_{\De}@>>>0$$ have the form $$0@>>>\Hm_1\(\im\Om_{\De}\)@>>>\Hm_0\(\ker\Om_{\De}\)@>i_1>>\ao{Q}@>i>>\Hm_0 \(\im\Om_{\De}\)@>>>0$$ $$0@>>>\Hm_1\(\coker\Om_{\De}\)@>>>\Hm_0\(\im\Om_{\De}\)@>j>>\ao{P}@>>>\Hm_0 \(\coker\Om_{\De}\)@>>>0.$$ It is straightforward to check that the composition $j\com i\:\ao{Q}\to\ao{P}$ coincides with the adjoint operator $\De^*\:\ao{Q}\to\ao{P}$. Hence $\ker \De^*/\im i_1$ is isomorphic to $\ker j=\Cl\(\De\)$ and we get the desired exact sequence. \endProof \Corollary If $\ker\Om_{\De}=0$ then the group of linear conservation laws $\Cl\(\De\)$ is isomorphic to $\ker\De^*$. \endCorollary Let us give an explicit expression for the map $\ker\De^*\to\Cl\(\De\)$. Suppose $\ao{q}\in\ker\De^*\subset\ao{Q}$. Then, choosing a homomorphism $\ka$ (see Remark \labelref{Gr}), we have a \do{} from $P$ to $\Si_1$, $p\mapsto G_{\ka}\(\De\(p,\ao{q}\)\)$. The Green formula yields $\p(\De\(p\),\ao{q})=\de G_{\ka}\(\De\(p,\ao{q}\)\)$. Hence the operator $p\mapsto G_{\ka}\(\De\(p,\ao{q}\)\)$ is an 1-cocycle of the complex $\coker\Om_{\De}$ and we obtain a map $\ch\:\ker\De^*\to\Cl\(\De\)$, where $\ch\(\ao{q}\)$ is the conservation law corresponding to the operator $p\mapsto G_{\ka}\(\De\(p,\ao{q}\)\)$. Let us show that this is the map under consideration. If $\na$ is an 1-cocycle of $\coker\Om_{\De}$, the element $\ao{q}$ from $\ker\De^*$ corresponding to it according to the proof of theorem \labelref{exseq} can be found as $\ao{q}=\mu\(\sq\)$, where $\sq\in\Diff\(Q,B\)$ satisfy the relation $\sq\com\De=\de\com\na$. If $\na$ is the operator $p\mapsto G_{\ka}\(\De\(p,\ao{q}\)\)$ then $\sq=\ao{q}\in\Diff\( P,B\)$ and $\mu\(\sq\)=\mu\(\ao{q}\)=\ao{q}$. \Subsection{The Noether Theorem} We start with a description of transformations of the objects that Noether's theorem includes. Let $\DER\(P\)=\{\(X_P,X\)|\,X\in\Der_1\(A\), X_P\in\Diff_1\(P,P\), \text{and} \,\,\forall a\in A, \forall p\in P \quad X_P\(ap\)=\{X_P,a\}aX_P\(p\)+X\(a\)p\, \}$. If $X\in\Der_1\(A\)$ then $\(X_B,X\)\in\DER\(B\)$, where $X_B=-X^*$ (more generally, if $\(X_P,X\)\in\DER\(P\)$ then one can define $\(X_{\ao{P}},X\)\in\DER\(\ao{P}\)$, $X_{\ao{P}}=-\(X_P\)^*$). Given $\(X_P,X\)\in \DER\(P\)$, define $\(X_{\Diff},X\)\in\DER\(\Diff\(P,B\)\)$ by the formula $X_{\Diff}\(\De\)=\[X,\De\]= X_{B}\com\De-\{X,\De\}\De\com X_P$. For $L\in\Diff\(P,\Diff\(P,B \)\)$ we put $X_P\(L\)=X_{\Diff}\com L-\{X,L\}L\com\allowmathbreak X_P$. If $L\in\Diff^{sym}_{\(2\)}\(P,B\)$ then $X_P\(L\)\in\Diff^{sym}_{\(2\)}\(P,B\)$ and is called the \ of $L$ under the infinitesimal transformation $X_P$. Clearly, $X_P$ generates the map of Lagrangians on $P$: $X_P\:\cL ag\(P\) \to\cL ag\(P\)$. >From the definition of variation it follows that \newline $X_P\(L\)\(p_1\) \(p_2\)=X_B\(L\(p_1\)\(p_2\)\)-\{X,L\}\{X,p_1\}L\(p_1\)\(X_P\(p_2\)\)-\> \{X,L\}L\(X_P\(p_1\)\)\(p_2\)$. \newline Further, using proposition \labelref{pollino}\therosteritem4 we get $$X_B\(L\(p_1\)\(p_2\)\)=-\{X,L\}\{X,p_1\}\{X,p_2\}\de\(L\(p_1\)\(p_2\)\com X\).$$ It follows from Green's formula that $\forall p_1,p_2\in P$ $$L\(p_1,p_2\)= \p(\cE_L\(p_1\),p_2)+\de G_{\ka}\(L\(p_1\)\(p_2,1\)\).$$ Combining these formulae, we obtain the following \:\newline $X_P\(L\) \(p_1\)\(p_2\)=-\{L,p_2\}\{p_1,p_2\}\p(X_P\(p_2\),\cE_L\(p_1\))-\> \{L,p_1\}\p(X_P\(p_1\),\cE\(p_2\))-\de n_{\ka}\(p_1,p_2\),$ \newline where $n_{\ka}\(p_1,p_2\)=\>\{X,L\}\{X,p_1\}\{X,p_2\}L\(p_1\)\(p_2\) \com X+\{X,L\}\{X,p_1\}G_{\ka}\(p_1,X_P\(p_2\)\)+\> \{X,L\}\{X,p_2\}\{p_1,p_2\}G_{\ka}\(p_2,X_P\(p_1\)\)$. \Definition $X_P\in\DER\(P\)$ is said to be a \ of a Lagrangian $\cL$ if \newline $X_P\(\cL\)=0$. \endDefinition >From theorem \labelref{th} it follows that a symmetry of $\cL$ is a symmetry of the operator $\cE_{\cL}=\cE\(\cL\)$, \ie $X_P\(\cE_{\cL}\)=X_{\ao{P}}\com\cE_{\cL}- \{X,\cE_{\cL}\}\cE_{\cL}\com X_P=0$, and conversely. If $X_P$ is a symmetry of $\cL$, then $X_P\(L\)=\om\(L'\)$, where $L$ is a density of $\cL$, $L'\in\Diff^{sym}_{\(2\)}\(P,\Si_1\)$. Consider the integral 1-form $n_{\ka}\(p_1,p_2\)+L'\(p_1\)\(p_2\)$. The first variation formula implies that this integral form is closed whenever $p_1, p_2\in\ker\cE_{\cL}$. Clearly, its homological class does not depend on the choice of $\ka$ and $L'$. Thus we have proved the following: \xTheorem{(Noether)} If $X_P$ is a symmetry of the Lagrangian $\cL=L\mod\im\om$ and the module $P$ is projective, then the map $p\mapsto n_{\ka}\(p,p\)+L'\(p\) \(p\)$, $p\in P$, gives rise to a conservation law of the equation $\cE_{\cL}=0$. \endTheorem \Appendix{}{Right Connections} This appendix is devoted to a general algebraic setting for the formalism of right connections. \AppSubsection{} We begin with a collection of a few facts about (usual) linear connections. One can consider a \ on an $A$-module $P$ as an $A$-homomorphism of grading zero $\ga\:P\mapsto\J^1\(P\)$ satisfying $\nu\com\ga=id_P$, where $\nu\:\J^1\(P\)\to P$ is the natural projection. The composition $\La^i\ox P@>id\ox\ga>>\La^i\ox\J^1\(P\)@>s>>\La^{i+1}\ox P$ of $\ga$ and the Spencer operator $s$ is called the \ associated with $\ga$ and denoted by $d\:\La^i\ox P\to\La^{i+1}\ox P$. The first de~Rham operator $d\:P\to\La^1\ox P$ gives rise in a natural way to a \, \ie a homomorphism $\na\:\Der_1\(A\)\to\Diff_1\(P,P\)$, $X\mapsto\na_X$, such that $\na_X\(ap\)=\{X,a\}a\na_X\(p\)+X\(a\)p$, $X\in\Der_1\(A\)$. The de~Rham sequence with values in $P$ $$0@>>>P@>d>>\La^1 \ox P@>d>>\La^2\ox P@>d>>\ldots$$ is not a complex in general. The operator $d^2\:\La^i\ox P\to\La^{i+2}\ox P$ is said to be \ of the connection $\ga$. It is straightforward to check that $d^2$ is a $\La^*$-linear operator and, therefore, for $P$ projective the curvature $d^2$ is multiplication by a $R_{\ga}\in\La^2\ox\Hom_A\(P,P\)$. \AppSubsection{} We define a right connection in a dual way. \Definition A \ on $P$ is defined to be an $A$-homomorphism of grading zero $\la\:\Diff^+_1\(P\)\to P$ satisfying $\la\com\io=id_P$, where $\io\:P\to\Diff^+_1\(P\)$ is the natural inclusion. \endDefinition Given a module $P$ with a right connection $\la$, one can carry out the construction of the {\it sequence of integral form with values in} $P$ by letting the operator $\de\:\Der_{i+1}\(P\)\to\Der_i\(P\)$ be the composition $\Der_{i+1}\(P\)@>S>>\Der_i\(\Diff^+_1\(P\)\)@>\Der_i\(\la\)>>\Der_i\(P\)$ of the Spencer operator $S$ and $\Der_i\(\la\)$: $$0@<<, \ie a homomorphism $\na\:\Der_1\(A\)\to\Diff^+_1\(P,P\)$, $X\mapsto\na_X$, such that $$\na_X\(ap\)=\{X,a\}a\na_X\(p\)-X\(a\)p,\qquad X\in \Der_1\(A\). \eq rLeib $$ \Remark This ``right Leibniz rule'' may be reformulated by the following way. The operator $\na$ can be extended to an $A$-homomorphism $\na\:\Diff_1\(A,A\)\to\Diff^+_1\(P,P\)$ by putting $\na_{id_A}=id_P$. Then \eqref{rLeib} means that the map $\na\:\Diff^+_1\(A,A\)\allowmathbreak \to\Diff_1\(P,P\)$ is also an $A$-homomorphism. \endRemark The operator $\de^2\:\Der_{i+2}\(P\)\to\Der_i\(P\)$ is called the \ of the right connection $\la$. A direct calculation shows that this is a $\Der_*\(A\)$-linear operator and, so, for $P$ projective the curvature $\de^2$ can be interpreted as inner product with a $R_{\la}\in\La^2\ox\Hom_A\(P,P\)$. \Example If on a projective module $P$ there is a connection $\ga\:P\to\J^1\(P\)$, then on $\ao{P}$ there is a right connection $\la=\ga^*\: \ao{\(\J^1\(P\)\)}=\Diff^+_1\(\ao{P}\)\to\ao{P}$. In particular, the obvious flat connection on $A$ $\ga\:A\to\J^1\(A\)$, $\ga\(a\)=aj_1\(1\)$, provides the canonical flat right connection on the Berezinian $B$. The complex of integral forms with values in $\ao{P}$ is dual to the de~Rham complex with coefficients in $P$. \endExample % \Acknowledgments The author is grateful to Professor A. M. Vinogradov for very stimulating attention to this work and to I. S. Krasil\cprime{}shchik, M. M. Vinogradov, and D. M. Guessler for useful discussions. He also wishes to thank the SISSA for warm hospitality and pleasant atmosphere in which this work was done and the Ministero degli Affari Esteri for a fellowship. It is a great pleasure for the author to give his special thanks to the scientific attach\'e at the Italian Embassy in Moscow Professor G. Piragino for a crucial help which made possible his visit to SISSA. % \References % \enddocument % % [end of file] %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%