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1. Introduction


Consider the problem
−∆u + V (x)u− au = f, (1.1)


whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant, and the
functionV (x) converges to0 at infinity. Fora ≥ 0, the essential spectrum of the
operatorA : E → F , which corresponds to the left side of problem (1.1) con-
tains the origin. Consequently, such operator fails satisfy the Fredholm property.
Its image is not closed, ford > 1 the dimension of its kernel and the codimension
of its image are not finite. In the present work we will study certain properties of
the operators of this kind. Note that elliptic equations with non-Fredholm operators
were treated extensively in recent years (see [15], [18], [19], [20], [21], also [3])
along with their potential applications to the theory of reaction-diffusion problems
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(see [7], [8]). In the particular case whena = 0, the operatorA satisfies the Fred-
holm property in some properly chosen weighted spaces (see [1], [2], [3], [5], [6]).
However, the case ofa 6= 0 is significantly different and the approach developed in
these articles cannot be applied.


One of the important issues about equations with non-Fredholm operators con-
cerns their solvability. We will address it in the followingsetting. Letfn be a
sequence of functions in the image of the operatorA, such thatfn → f in L2(Rd)
asn → ∞. Denote byun a sequence of functions fromH2(Rd) such that


Aun = fn, n ∈ N.


Since the operatorA fails to satisfy the Fredholm property, the sequenceun may
not be convergent. Let us call a sequenceun such thatAun → f a solution in the
sense of sequences of problemAu = f (see [14]). If this sequence converges to
a functionu0 in the norm of the spaceE, thenu0 is a solution of this problem.
Solution in the sense of sequences is equivalent in this sense to the usual solution.
However, in the case of non-Fredholm operators this convergence may not hold or it
can occur in some weaker sense. In this case, the solution in the sense of sequences
may not imply the existence of the usual solution. In the present work we will find
sufficient conditions of equivalence of solutions in the sense of sequences and the
usual solutions. In the other words, the conditions on sequencesfn under which the
corresponding sequencesun are strongly convergent.


In the first part of the article we study the problem with the transport term


(
− d2


dx2


)s
u− b


du


dx
− au = f(x), x ∈ R, 0 < s < 1, (1.2)


wherea ≥ 0 andb ∈ R, b 6= 0 are constants and the right side belongs toL2(R).


The operator
(
− d2


dx2


)s
can be defined by means of the spectral calculus and is


extensively used, for instance in the studies of the anomalous diffusion and related
problems (see [22] and the references therein). Anomalous diffusion can be de-
scribed as a random process of particle motion characterized by the probability
density distribution of jump length. The moments of this density distribution are
finite in the case of normal diffusion, but this is not the casefor the anomalous dif-
fusion. The asymptotic behavior at the infinity of the probability density function
determines the value of the power of the Laplace operator (see [13]). The form
boundedness criterion for the relativistic Schrödinger operator was proved in [12].
The article [11] deals with establishing the embedding theorems and the studies of
the spectrum of a certain pseudodifferential operator. Theequation with drift in the
context of the Darcy’s law describing the fluid motion in the porous medium was
treated in [20]. The transport term is significant when studying the emergence and
propagation of patterns arising in the theory of speciation(see [16]). Nonlinear
propagation phenomena for the reaction-diffusion type equations including the drift
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term was studied in [4]. Weak solutions of the Dirichlet and Neumann problems
with drift were considered in [10]. Apparently, the operator involved in the left side
of (1.2)


La, b, s :=
(
− d2


dx2


)s
− b


d


dx
− a : H1(R) → L2(R), 0 < s ≤ 1


2
, (1.3)


La, b, s :=
(
− d2


dx2


)s
− b


d


dx
− a : H2s(R) → L2(R),


1


2
< s < 1 (1.4)


is non-selfadjoint. By means of the standard Fourier transform


f̂(p) :=
1√
2π


∫ ∞


−∞


f(x)e−ipxdx, p ∈ R (1.5)


it can be easily derived that the essential spectrum of the operatorLa, b, s is given
by


λa, b, s(p) := |p|2s − a− ibp, p ∈ R.


Evidently, whena > 0 the operatorLa, b, s is Fredholm, since the origin does not
belong to its essential spectrum. But whena vanishes, the operatorL0, b, s does not
satisfy the Fredholm property because its essential spectrum contains the origin.


Note that in the absence of the transport term we are dealing with the self-adjoint
operator (


− d2


dx2


)s
− a : H2s(R) → L2(R), a > 0,


which fails to satisfy the Fredholm property (see [23]). Letus write down the
corresponding sequence of approximate equations withm ∈ N as


(
− d2


dx2


)s
um − b


dum


dx
− aum = fm(x), x ∈ R, 0 < s < 1, (1.6)


where the right sides tend to the right side of (1.2) inL2(R) asm → ∞. The inner
product of two functions


(f(x), g(x))L2(R) :=


∫ ∞


−∞


f(x)ḡ(x)dx, (1.7)


with a slight abuse of notations when these functions are notsquare integrable.
Indeed, iff(x) ∈ L1(R) andg(x) ∈ L∞(R), then clearly the integral in the right
side of (1.7) makes sense, like for example in the case of functions involved in the
orthogonality conditions (1.10) and (1.11) of Theorems 1.1and 1.2 below. For our
problems on the finite intervalI := [0, 2π] with periodic boundary conditions, we
will use the inner product analogous to (1.7), replacing thereal line withI. In the
first part of the present work we will consider the spacesH1(R) andH2s(R), 0 <


s < 1 equipped with the norms


‖u‖2H1(R) := ‖u‖2L2(R) +


∥∥∥∥∥
du


dx


∥∥∥∥∥


2


L2(R)


(1.8)
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and


‖u‖2H2s(R) := ‖u‖2L2(R) +


∥∥∥∥∥
(
− d2


dx2


)s
u


∥∥∥∥∥


2


L2(R)


(1.9)


respectively. When using the normsH1(I) andH2s(I), 0 < s < 1 in the second
part of the article, we will replaceR with I in formulas (1.8) and (1.9) respectively.
Our first main proposition is as follows.


Theorem 1.1.Letf(x) : R → R andf(x) ∈ L2(R).


a) Supposea > 0 and 0 < s ≤ 1


2
. Then equation (1.2) admits a unique solution


u(x) ∈ H1(R).


b) If a > 0 and
1


2
< s < 1, then problem (1.2) possesses a unique solutionu(x) ∈


H2s(R).


c) Supposea = 0 and0 < s <
1


4
. Let in additionf(x) ∈ L1(R). Then equation


(1.2) has a unique solutionu(x) ∈ H1(R).


d) If a = 0 and
1


4
≤ s ≤ 1


2
, we also assume thatxf(x) ∈ L1(R). Then prob-


lem (1.2) admits a unique solutionu(x) ∈ H1(R) if and only if the orthogonality
condition


(f(x), 1)L2(R) = 0 (1.10)


holds.


e) Supposea = 0 and
1


2
< s < 1. Let in additionxf(x) ∈ L1(R). Then equation


(1.2) possesses a unique solutionu(x) ∈ H2s(R) if and only if the orthogonality
relation (1.10) holds.


Evidently, the expression in the left side of (1.10) is well defined by virtue of the
simple argument analogous to the proof of Fact 1 of [18]. We turn our attention to
establishing the solvability in the sense of sequences for our equation on the whole
real line.


Theorem 1.2. Let m ∈ N, fm(x) : R → R and fm(x) ∈ L2(R). Moreover,
fm(x) → f(x) in L2(R) asm → ∞.


a) If a > 0 and 0 < s ≤ 1


2
, then equations (1.2) and (1.6) have unique solutions


u(x) ∈ H1(R) and um(x) ∈ H1(R) respectively, such thatum(x) → u(x) in
H1(R) asm → ∞.


b) Supposea > 0 and
1


2
< s < 1. Then problems (1.2) and (1.6) possess unique


solutionsu(x) ∈ H2s(R) andum(x) ∈ H2s(R) respectively, such thatum(x) →
u(x) in H2s(R) asm → ∞.
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c) If a = 0 and0 < s <
1


4
, let in additionfm(x) ∈ L1(R) andfm(x) → f(x) in


L1(R) asm → ∞. Then equations (1.2) and (1.6) admit unique solutionsu(x) ∈
H1(R) andum(x) ∈ H1(R) respectively, such thatum(x) → u(x) in H1(R) as
m → ∞.


d) Suppose thata = 0 and
1


4
≤ s ≤ 1


2
. We also assume thatxfm(x) ∈ L1(R) and


xfm(x) → xf(x) in L1(R) asm → ∞. Furthermore,


(fm(x), 1)L2(R) = 0, m ∈ N (1.11)


holds. Then problems (1.2) and (1.6) have unique solutionsu(x) ∈ H1(R) and
um(x) ∈ H1(R) respectively, such thatum(x) → u(x) in H1(R) asm → ∞.


e) Suppose thata = 0 and
1


2
< s < 1. Let in additionxfm(x) ∈ L1(R) and


xfm(x) → xf(x) in L1(R) asm → ∞. Moreover, orthogonality relations (1.11)
hold. Then equations (1.2) and (1.6) possess unique solutionsu(x) ∈ H2s(R) and
um(x) ∈ H2s(R) respectively, such thatum(x) → u(x) in H2s(R) asm → ∞.


Note that in the parts a) and b) of Theorems 1.1 and 1.2 above the orthogonality
conditions are not used, as distinct from the situation without a drift term consid-
ered in the parts e) of Theorems 1.1 and 1.2 of [23]. Another issue here is that in
Theorems 1.1 and 1.2 of the present article we establish the solvability of our equa-


tions inH1(R) for 0 < s ≤ 1


2
but in the cases a) and e) of Theorems 1.1 and 1.2 of


[23] we show the solvability of our problems without a transport only in H2s(R).
Finally, we observe that in the parts e) of Theorems 1.1 and 1.2 above only a single
orthogonality condition is needed, as distinct from the cases a) of Theorems 1.1


and 1.2 of [23], where the second orthogonality relation is required fors ∈
[3
4
, 1
)


along with the assumption thatx2f(x), x2fm(x) ∈ L1(R), m ∈ N. Hence, the
introduction of the transport term provides the regularization for the solutions of
our equations.


In the second part of the work we study our equation on the finite interval with
periodic boundary conditions, i.e.I := [0, 2π], namely


(
− d2


dx2


)s
u− b


du


dx
− au = f(x), x ∈ I, (1.12)


wherea ≥ 0 andb ∈ R, b 6= 0 are constants and the right side of (1.12) is bounded
and periodic. Obviously,


‖f‖L1(I) ≤ 2π‖f‖L∞(I) < ∞, ‖f‖L2(I) ≤
√
2π‖f‖L∞(I) < ∞. (1.13)


Thusf(x) ∈ L1(I) ∩ L2(I) as well. We use the Fourier transform


fn :=
1√
2π


∫ 2π


0


f(x)e−inxdx, n ∈ Z, (1.14)
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such that


f(x) =
∞∑


n=−∞


fn
einx√
2π


.


Evidently, the non-selfadjoint operator involved in the left side of (1.12)


La, b, s :=
(
− d2


dx2


)s
− b


d


dx
− a : H1(I) → L2(I), 0 < s ≤ 1


2
, (1.15)


La, b, s :=
(
− d2


dx2


)s
− b


d


dx
− a : H2s(I) → L2(I),


1


2
< s < 1 (1.16)


is Fredholm. By means of (1.14), it can be easily verified thatthe spectrum of
La, b, s is given by


λa, b, s(n) := |n|2s − a− ibn, n ∈ Z


and the corresponding eigenfunctions are the Fourier harmonics
einx√
2π


, n ∈ Z. The


eigenvalues of the operatorLa, b, s are simple, as distinct from the situation with-
out the transport term, when the eigenvalues correspondingto n 6= 0 are double-
degenerate. The appropriate function spaces hereH1(I) andH2s(I) are


{u(x) : I → R | u(x), u′(x) ∈ L2(I), u(0) = u(2π), u′(0) = u′(2π)}.


and
{
u(x) : I → R | u(x),


(
− d2


dx2


)s


u(x) ∈ L2(I), u(0) = u(2π), u′(0) = u′(2π)


}


respectively. For the technical purposes, we introduce thefollowing auxiliary con-
strained subspaces


H1
0 (I) = {u(x) ∈ H1(I) | (u(x), 1)L2(I) = 0} (1.17)


and
H2s


0 (I) = {u(x) ∈ H2s(I) | (u(x), 1)L2(I) = 0} (1.18)


which are Hilbert spaces as well (see e.g. Chapter 2.1 of [9]). Clearly, fora > 0,
the kernel of the operatorLa, b, s is trivial. Whena = 0, we consider


L0, b, s : H1
0 (I) → L2(I), 0 < s ≤ 1


2
,


L0, b, s : H2s
0 (I) → L2(I),


1


2
< s < 1.
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Evidently, such operator has the trivial kernel as well. We write down the corre-
sponding sequence of the approximate equations withm ∈ N, namely


(
− d2


dx2


)s
um − b


dum


dx
− aum = fm(x), x ∈ I, (1.19)


where the right sides are bounded, periodic and converge to the right side of (1.12) in
L∞(I) asm → ∞. The purpose of Theorems 1.3 and 1.4 below is to demonstrate
the formal similarity of the results on the finite interval with periodic boundary
conditions to the ones derived for the whole real line situation in Theorems 1.1 and
1.2 above.


Theorem 1.3.Letf(x) : I → R, such thatf(0) = f(2π) andf(x) ∈ L∞(I).


a) If a > 0 and0 < s ≤ 1


2
, then equation (1.12) admits a unique solutionu(x) ∈


H1(I).


b) Supposea > 0 and
1


2
< s < 1. Then problem (1.12) has a unique solution


u(x) ∈ H2s(I).


c) If a = 0 and0 < s ≤ 1


2
, then equation (1.12) possesses a unique solutionu(x) ∈


H1
0 (I) if and only if the orthogonality condition


(f(x), 1)L2(I) = 0 (1.20)


holds.


d) Supposea = 0 and
1


2
< s < 1. Then problem (1.12) admits a unique solution


u(x) ∈ H2s
0 (I) if and only if the orthogonality relation (1.20) holds.


Our final main statement deals with the solvability in the sense of sequences for
our problem on the finite intervalI.


Theorem 1.4. Letm ∈ N, fm(x) : I → R, such thatfm(0) = fm(2π). Further-
more,fm(x) ∈ L∞(I) andfm(x) → f(x) in L∞(I) asm → ∞.


a) Supposea > 0 and0 < s ≤ 1


2
. Then equations (1.12) and (1.19) possess unique


solutionsu(x) ∈ H1(I) andum(x) ∈ H1(I) respectively, such thatum(x) → u(x)
in H1(I) asm → ∞.


b) If a > 0 and
1


2
< s < 1, then problems (1.12) and (1.19) admit unique solutions


u(x) ∈ H2s(I) and um(x) ∈ H2s(I) respectively, such thatum(x) → u(x) in
H2s(I) asm → ∞.
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c) Suppose thata = 0, 0 < s ≤ 1


2
and


(fm(x), 1)L2(I) = 0, m ∈ N. (1.21)


Then equations (1.12) and (1.19) have unique solutionsu(x) ∈ H1
0 (I) andum(x) ∈


H1
0 (I) respectively, such thatum(x) → u(x) in H1


0 (I) asm → ∞.


d) If a = 0,
1


2
< s < 1 and orthogonality relations (1.21) hold. Then problems


(1.12) and (1.19) admit unique solutionsu(x) ∈ H2s
0 (I) and um(x) ∈ H2s


0 (I)
respectively, such thatum(x) → u(x) in H2s


0 (I) asm → ∞.


Note that in the cases a) and b) of Theorems 1.3 and 1.4 above the orthogonality
relations are not needed. When there is no transport term in our problems, the
situation is more singular (see formulas (3.2) and (3.8) below with a = n2s


0 , n0 ∈
N).


2. The whole real line case


Proof of Theorem 1.1.Let us first demonstrate that it would be sufficient to solve our
equation inL2(R). Indeed, ifu(x) is a square integrable solution of (1.2), directly
from this equation under the stated assumptions we obtain


(
− d2


dx2


)s
u− b


du


dx
∈ L2(R)


as well. By means of the standard Fourier transform (1.5), wederive (|p|2s −
ibp)û(p) ∈ L2(R), such that


∫ ∞


−∞


(|p|4s + b2p2)|û(p)|2dp < ∞. (2.1)


Let 0 < s ≤ 1


2
. From (2.1) we easily deduce that


∫ ∞


−∞


p2|û(p)|2dp < ∞. Hence,


du


dx
∈ L2(R) andu(x) ∈ H1(R) as well.


Suppose
1


2
< s < 1. Then (2.1) yields


∫ ∞


−∞


|p|4s|û(p)|2dp < ∞.


Therefore,
(
− d2


dx2


)s
u ∈ L2(R), such thatu(x) ∈ H2s(R) as well.
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Let us establish the uniqueness of solutions of (1.2) in the case when0 < s ≤ 1


2
.


For
1


2
< s < 1 the argument will be similar. Suppose thatu1(x), u2(x) ∈ H1(R)


satisfy (1.2). Then their differencew(x) := u1(x) − u2(x) ∈ H1(R) solves the
homogeneous problem


(
− d2


dx2


)s
w − b


dw


dx
− aw = 0.


Since the operatorLa, b, s defined in (1.3) does not possess any nontrivial zero
modes inH1(R), the functionw(x) = 0 identically onR.


We apply the standard Fourier transform (1.5) to both sides of equation (1.2)
and arrive at


û(p) =
f̂(p)


|p|2s − a− ibp
, p ∈ R, 0 < s < 1. (2.2)


Thus,


‖u‖2L2(R) =


∫ ∞


−∞


|f̂(p)|2
(|p|2s − a)2 + b2p2


dp. (2.3)


Let us first consider the cases a) and b) of the theorem. (2.3) implies that


‖u‖2L2(R) ≤
1


C
‖f‖2L2(R) < ∞


due to the one of our assumptions. Here and further downC will denote a finite,
positive constant. By virtue of the argument above, in the situation whena > 0,


equation (1.2) admits a unique solutionu(x) ∈ H1(R) for 0 < s ≤ 1


2
andu(x) ∈


H2s(R) if
1


2
< s < 1.


We conclude the argument by treating the cases whena = 0. Formula (2.2)
gives us


û(p) =
f̂(p)


|p|2s − ibp
χ{|p|≤1} +


f̂(p)


|p|2s − ibp
χ{|p|>1}. (2.4)


Here and throughout the articleχA will denote the characteristic function of a set
A ⊆ R. Evidently, the second term in the right side of (2.4) can be estimated from


above in the absolute value by
|f̂(p)|√
1 + b2


∈ L2(R) sincef(x) is square integrable as


assumed. Clearly, the inequality


‖f̂(p)‖L∞(R) ≤
1√
2π


‖f(x)‖L1(R) (2.5)


holds. When0 < s <
1


4
, we use (2.5) to derive


∣∣∣ f̂(p)


|p|2s − ibp
χ{|p|≤1}


∣∣∣ ≤ |f̂(p)|
|p|2s χ{|p|≤1} ≤


‖f(x)‖L1(R)√
2π|p|2s


χ{|p|≤1}.
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This allows us to obtain the upper bound on the norm


∥∥∥ f̂(p)


|p|2s − ibp
χ{|p|≤1}


∥∥∥
2


L2(R)
≤


‖f(x)‖2
L1(R)


π(1− 4s)
< ∞


sincef(x) ∈ L1(R) as assumed. By means of the argument above, in the case c) of
the theorem equation (1.2) possesses a unique solutionu(x) ∈ H1(R).


To establish the statements d) and e) of our theorem, we express


f̂(p) = f̂(0) +


∫ p


0


df̂(s)


ds
ds.


Hence, the first term in the right side of (2.4) can be written as


f̂(0)


|p|2s − ibp
χ{|p|≤1} +


∫ p


0
df̂(s)
ds


ds


|p|2s − ibp
χ{|p|≤1}. (2.6)


By virtue of definition (1.5) of the standard Fourier transform, we easily arrive at
∣∣∣∣∣
df̂(p)


dp


∣∣∣∣∣ ≤
1√
2π


‖xf(x)‖L1(R).


This enables us to estimate the second term in (2.6) from above in the absolute value
by


1√
2π


‖xf(x)‖L1(R)


|b| χ{|p|≤1} ∈ L2(R)


due to our assumptions. Let us analyze the first term in (2.6),which is given by


f̂(0)


|p|2s − ibp
χ{|p|≤1}. (2.7)


Clearly, if
1


4
≤ s ≤ 1


2
, expression (2.7) can be bounded below in the absolute value


by
|f̂(0)|


|p|2s
√
1 + b2


χ{|p|≤1},


which does not belong toL2(R) unlessf̂(0) vanishes. This gives us orthogonality
relation (1.10). In the case d) of the theorem, according to the argument above,
the square integrability of the solutionu(x) of equation (1.2) will be equivalent to
u(x) ∈ H1(R).


Evidently, for
1


2
< s < 1, expression (2.7) can be estimated below in the abso-


lute value by
|f̂(0)|


|p|
√
1 + b2


χ{|p|≤1},
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which is not square integrable unless orthogonality condition (1.10) holds. In the
case e) of our theorem, by virtue of the argument above, the square integrability of
the solutionu(x) of problem (1.2) will be equivalent tou(x) ∈ H2s(R).


Let us proceed to establishing the solvability in the sense of sequences for our
problem on the whole real line.


Proof of Theorem 1.2.First we suppose that equations (1.2) and (1.6) admit unique


solutionsu(x) ∈ H1(R) andum(x) ∈ H1(R), m ∈ N respectively if0 < s ≤ 1


2
,


similarly u(x) ∈ H2s(R) andum(x) ∈ H2s(R), m ∈ N for
1


2
< s < 1, such that


um(x) → u(x) in L2(R) asm → ∞. This will imply that um(x) also converges


to u(x) in H1(R) asm → ∞ for 0 < s ≤ 1


2
and analogouslyum(x) → u(x)


in H2s(R) asm → ∞ when
1


2
< s < 1. Indeed, from (1.2) and (1.6) we easily


deduce
∥∥∥∥∥
(
− d2


dx2


)s
(um−u)−b


d(um − u)


dx


∥∥∥∥∥
L2(R)


≤ ‖fm−f‖L2(R)+a‖um−u‖L2(R). (2.8)


The right side of upper bound (2.8) tends to zero asm → ∞ due to our assumptions.
Using the standard Fourier transform (1.5), we easily arrive at


∫ ∞


−∞


(|p|4s + b2p2)|ûm(p)− û(p)|2dp → 0, m → ∞. (2.9)


Let 0 < s ≤ 1


2
. By means of (2.9)


∫ ∞


−∞


p2|ûm(p)− û(p)|2dp → 0, m → ∞,


such that
dum


dx
→ du


dx
in L2(R) asm → ∞. Therefore, if0 < s ≤ 1


2
, we have


um(x) → u(x) in H1(R) asm → ∞ as well.


Suppose
1


2
< s < 1. By virtue of (2.9)


∫ ∞


−∞


|p|4s|ûm(p)− û(p)|2dp → 0, m → ∞.


Hence
(
− d2


dx2


)s
um →


(
− d2


dx2


)s
u in L2(R) asm → ∞. This implies that for


1


2
< s < 1, we obtainum(x) → u(x) in H2s(R) asm → ∞ as well.
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We apply the standard Fourier transform (1.5) to both sides of (1.6), such that


ûm(p) =
f̂m(p)


|p|2s − a− ibp
, m ∈ N, p ∈ R, 0 < s < 1. (2.10)


Let us first discuss the cases a) and b) of the theorem. By meansof the parts a) and
b) of Theorem 1.1, when the constanta > 0 equations (1.2) and (1.6) admit unique


solutionsu(x) ∈ H1(R) andum(x) ∈ H1(R), m ∈ N respectively if0 < s ≤ 1


2
,


similarly u(x) ∈ H2s(R) andum(x) ∈ H2s(R), m ∈ N for
1


2
< s < 1. Formulas


(2.10) and (2.2) give us


‖um − u‖2L2(R) =


∫ ∞


−∞


|f̂m(p)− f̂(p)|2
(|p|2s − a)2 + b2p2


dp.


Hence,


‖um − u‖L2(R) ≤
1


C
‖fm − f‖L2(R) → 0, m → ∞


via the one of our assumptions. Therefore, in the cases ofa > 0 we haveum(x) →
u(x) in H1(R) asm → ∞ for 0 < s ≤ 1


2
andum(x) → u(x) in H2s(R) asm → ∞


if
1


2
< s < 1 by virtue of the argument above.


Let us finish the proof of the theorem by treating the situations when the param-
etera = 0. By means of the result of the part a) of Lemma 3.3 of [17], under our
assumptions


(f(x), 1)L2(R) = 0 (2.11)


holds in the cases d) and e). Then by virtue of the parts c), d) and e) of Theorem
1.1, problems (1.2) and (1.6) witha = 0 have unique solutionsu(x) ∈ H1(R) and


um(x) ∈ H1(R), m ∈ N respectively when if0 < s ≤ 1


2
, similarlyu(x) ∈ H2s(R)


andum(x) ∈ H2s(R), m ∈ N for
1


2
< s < 1. Formulas (2.10) and (2.2) imply that


ûm(p)− û(p) =
f̂m(p)− f̂(p)


|p|2s − ibp
χ{|p|≤1} +


f̂m(p)− f̂(p)


|p|2s − ibp
χ{|p|>1}. (2.12)


Apparently, the second term in the right side of (2.12) can bebounded from above
in theL2(R) norm by


1√
1 + b2


‖fm − f‖L2(R) → 0, m → ∞


via the one of our assumptions. Let0 < s <
1


4
. Using the analog of inequality


(2.5), we derive
∣∣∣∣∣
f̂m(p)− f̂(p)


|p|2s − ibp
χ{|p|≤1}


∣∣∣∣∣ ≤
|f̂m(p)− f̂(p)|


|p|2s χ{|p|≤1} ≤
‖fm − f‖L1(R)√


2π|p|2s
χ{|p|≤1},
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such that
∥∥∥∥∥
f̂m(p)− f̂(p)


|p|2s − ibp
χ{|p|≤1}


∥∥∥∥∥
L2(R)


≤ ‖fm − f‖L1(R)√
π(1− 4s)


→ 0, m → ∞


due to the one of the given assumptions. By means of the argument above,um(x) →
u(x) in H1(R) asm → ∞ in the situation when the constanta vanishes and


0 < s <
1


4
.


To address the cases d) and e) of our theorem, we use the orthogonality condi-
tions (2.11) and (1.11). Definition (1.5) of the standard Fourier transform yields


f̂(0) = 0, f̂m(0) = 0, m ∈ N.


Thus


f̂(p) =


∫ p


0


df̂(s)


ds
ds, f̂m(p) =


∫ p


0


df̂m(s)


ds
ds, m ∈ N. (2.13)


Therefore, the first term in the right side of (2.12) in the cases d) and e) of the
theorem can be written as


∫ p


0
[df̂m(s)


ds
− df̂(s)


ds
]ds


|p|2s − ibp
χ{|p|≤1}.


By means of the definition of the standard Fourier transform (1.5), we easily derive


∣∣∣df̂m(p)
dp


− df̂(p)


dp


∣∣∣ ≤ 1√
2π


‖xfm(x)− xf(x)‖L1(R).


Hence
∣∣∣∣∣


∫ p


0
[df̂m(s)


ds
− df̂(s)


ds
]ds


|p|2s − ibp
χ{|p|≤1}


∣∣∣∣∣ ≤
‖xfm(x)− xf(x)‖L1(R)√


2π|b|
χ{|p|≤1},


such that
∥∥∥∥∥


∫ p


0
[df̂m(s)


ds
− df̂(s)


ds
]ds


|p|2s − ibp
χ{|p|≤1}


∥∥∥∥∥
L2(R)


≤ ‖xfm(x)− xf(x)‖L1(R)√
π|b| → 0


asm → ∞ by means of the one of our assumptions. Therefore,um(x) → u(x) in
L2(R) asm → ∞. By virtue of the argument above in the situation whena = 0


we haveum(x) → u(x) in H1(R) asm → ∞ if
1


4
≤ s ≤ 1


2
andum(x) → u(x) in


H2s(R) asm → ∞ for
1


2
< s < 1.
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3. The problem on the finite interval


Proof of Theorem 1.3.Let us first establish that it would be sufficient to solve
our problem inL2(I). Indeed, ifu(x) is a square integrable solution of (1.12),
periodic onI along with its first derivative, directly from our equation under the
given conditions we derive


(
− d2


dx2


)s
u− b


du


dx
∈ L2(I).


(1.14) implies(|n|2s − ibn)un ∈ l2, such that


∞∑


n=−∞


(|n|4s + b2n2)|un|2 < ∞. (3.1)


Suppose0 < s ≤ 1


2
. Then by means of (3.1) we have


∞∑


n=−∞


n2|un|2 < ∞, which


yields
du


dx
∈ L2(I). Hence,u(x) ∈ H1(I) as well.


Let
1


2
< s < 1. By virtue of (3.1) we obtain


∞∑


n=−∞


|n|4s|un|2 < ∞, which gives


us
(
− d2


dx2


)s
u(x) ∈ L2(I). Thus,u(x) ∈ H2s(I) as well.


To show the uniqueness of solutions of (1.12), we discuss thesituation when


a > 0 and0 < s ≤ 1


2
. If a > 0 and


1


2
< s < 1, the similar ideas can be exploited


in H2s(I). For a = 0, 0 < s ≤ 1


2
and whena = 0,


1


2
< s < 1 our argument can


be generalized using the constrained subspacesH1
0 (I) andH2s


0 (I) respectively de-
fined above. Let us suppose thatu1(x), u2(x) ∈ H1(I) solve (1.12). Then their
differencew(x) := u1(x)− u2(x) ∈ H1(I) satifies the homogeneous equation


(
− d2


dx2


)s
w − b


dw


dx
− aw = 0.


Since the operatorLa, b, s introduced in (1.15) does not have any nontrivialH1(I)
zero modes, the functionw(x) ≡ 0 on I.


We apply the Fourier transform (1.14) to both sides of problem (1.12), which
yields


un =
fn


|n|2s − a− ibn
, n ∈ Z. (3.2)


Hence


‖u‖2L2(I) =
∞∑


n=−∞


|fn|2
(|n|2s − a)2 + b2n2


. (3.3)
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First we deal with the cases a) and b) of our theorem. By virtueof (3.3), we arrive
at


‖u‖2L2(I) ≤
1


C
‖f‖2L2(I) < ∞


via the one of our assumptions along with (1.13). By means of the argument above,
in the situation whena > 0, equation (1.12) admits a unique solutionu(x) ∈ H1(I)


if 0 < s ≤ 1


2
andu(x) ∈ H2s(I) for


1


2
< s < 1.


In order to conclude the proof of the theorem, we consider thesituation when
a = 0. Then (3.2) yields


un =
fn


|n|2s − ibn
, n ∈ Z. (3.4)


Evidently, the right side of (3.4) belongs tol2 if and only if


f0 = 0, (3.5)


such that


‖u‖2L2(I) =
∑


n∈Z, n 6=0


|fn|2
n4s + b2n2


≤ 1


1 + b2
‖f‖2L2(I) < ∞,


due to the one of the given conditions and (1.13). By virtue ofthe argument above
in the cases c) and d) of the theoremu(x) ∈ H1


0 (I) andu(x) ∈ H2s
0 (I) respectively


as well. Obviously, (3.5) is equivalent to orthogonality condition (1.20).


Let us proceed to establishing the solvability in the sense of sequences for our
problem on the intervalI with periodic boundary conditions.


Proof of Theorem 1.4.Under the given assumptions, we obtain


|f(0)− f(2π)| ≤ |f(0)− fm(0)|+ |fm(2π)− f(2π)| ≤ 2‖fm − f‖L∞(I) → 0


asm → ∞. Hence,f(0) = f(2π). By means of (1.13) forfm(x), f(x) bounded
on the intervalI, we obtainfm(x), f(x) ∈ L1(I) ∩ L2(I), m ∈ N. The analog of
(1.13) also implies


‖fm(x)− f(x)‖L1(I) ≤ 2π‖fm(x)− f(x)‖L∞(I) → 0, m → ∞. (3.6)


Hence,fm(x) → f(x) in L1(I) asm → ∞. Similarly, (1.13) yields


‖fm(x)− f(x)‖L2(I) ≤
√
2π‖fm(x)− f(x)‖L∞(I) → 0, m → ∞. (3.7)


Hence,fm(x) → f(x) in L2(I) asm → ∞ as well. We apply the Fourier transform
(1.14) to both sides of (1.19) and derive


um,n =
fm,n


|n|2s − a− ibn
, m ∈ N, n ∈ Z. (3.8)
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First we consider the cases a) and b) of our theorem. By virtueof the parts a) and
b) of Theorem 1.3, whena > 0 problems (1.12) and (1.19) have unique solutions


u(x) ∈ H1(I) andum(x) ∈ H1(I), m ∈ N respectively if0 < s ≤ 1


2
, similarly


u(x) ∈ H2s(I) andum(x) ∈ H2s(I), m ∈ N for
1


2
< s < 1. (3.8) along with (3.2)


and (3.7) imply that


‖um − u‖2L2(I) =


∞∑


n=−∞


|fm,n − fn|2
(|n|2s − a)2 + b2n2


≤ 1


C
‖fm − f‖2L2(I) → 0, m → ∞.


Thus,um(x) → u(x) in L2(I) asm → ∞. By means of (1.12) and (1.19) we derive
∥∥∥∥∥


(
− d2


dx2


)s


(um − u)− b
d(um − u)


dx


∥∥∥∥∥
L2(I)


≤ ‖fm − f‖L2(I) + a‖um − u‖L2(I).


The right side of this inequality converges to zero asm → ∞ due to (3.7). The
Fourier transform (1.14) gives us


∞∑


n=−∞


(|n|4s + b2n2)|um,n − un|2 → 0, m → ∞. (3.9)


Suppose0 < s ≤ 1


2
. Then (3.9) yields


∞∑


n=−∞


n2|um,n − un|2 → 0, m → ∞.


Therefore,
dum


dx
→ du


dx
in L2(I) asm → ∞, which implies thatum(x) → u(x) in


H1(I) asm → ∞ as well in the case a) of our theorem.


Let
1


2
< s < 1. By means of (3.9), we have


∞∑


n=−∞


|n|4s|um,n − un|2 → 0, m → ∞,


such that (
− d2


dx2


)s


um →
(


− d2


dx2


)s


u


in L2(I) asm → ∞. Therefore,um(x) → u(x) in H2s(I) asm → ∞ as well in
the case b) of the theorem.
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Finally, let us turn our attention to the situation when the constanta vanishes.
(1.21) along with (3.6) imply


|(f(x), 1)L2(I)| = |(f(x)− fm(x), 1)L2(I)| ≤ ‖fm − f‖L1(I) → 0, m → ∞.


Hence, the limiting orthogonality condition


(f(x), 1)L2(I) = 0 (3.10)


holds. By virtue of the parts c) and d) of Theorem 1.3, whena = 0 equations (1.12)
and (1.19) possess unique solutionsu(x) ∈ H1


0 (I) andum(x) ∈ H1
0 (I), m ∈ N


respectively for0 < s ≤ 1


2
, analogouslyu(x) ∈ H2s


0 (I) andum(x) ∈ H2s
0 (I), m ∈


N if
1


2
< s < 1. Formulas (3.2) and (3.8) yield


um,n − un =
fm,n − fn


|n|2s − ibn
, m ∈ N, n ∈ Z. (3.11)


Orthogonality relations (3.10) and (1.21) give us


f0 = 0, fm,0 = 0, m ∈ N.


We obtain the upper bound on the norm


‖um − u‖L2(I) =


√√√√
∞∑


n=−∞, n 6=0


|fm,n − fn|2
|n|4s + b2n2


≤ ‖fm − f‖L2(I)√
1 + b2


→ 0, m → ∞


via (3.7). Hence,um(x) → u(x) in L2(I) asm → ∞. Therefore, whena vanishes


and0 < s ≤ 1


2
, we haveum(x) → u(x) in H1


0 (I) asm → ∞ as well by means of


the argument analogous to the one above in the proof of the part a) of the theorem.


Whena = 0 and
1


2
< s < 1, we deriveum(x) → u(x) in H2s


0 (I) asm → ∞ as


well by virtue of the argument analogical to the one in the proof of the case b) of
our theorem.
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elliptiques dansRn, C. R. Acad. Sci. Paris Sér. I Math.,307 (1988), No. 11,
577–580.


[4] H. Berestycki, F. Hamel, N. Nadirashvili,The speed of propagation for KPP
type problems. I. Periodic framework,J. Eur. Math. Soc. (JEMS),7 (2005),
No. 2, 173–213.


[5] P. Bolley, T.L. Pham,Propriét́es d’indice en th́eorie ḧoldérienne pour des
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