state dependent delay equation,  limit cycle, slow stable manifolds, perturbation.isochrones





PARAMETERIZATION METHOD FOR


STATE-DEPENDENT DELAY PERTURBATION OF AN


ORDINARY DIFFERENTIAL EQUATION
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Abstract. We consider state-dependent delay equations (SDDE) ob-
tained by adding delays to a planar ordinary differential equation with
a limit cycle. These situations appear in models of several physical pro-
cesses, where small delay effects are added. Even if the delays are small,
they are very singular perturbations since the natural phase space of an
SDDE is an infinite dimensional space.


We show that the SDDE admits solutions which resemble the solu-
tions of the ODE. That is, there exist a periodic solution and a two
parameter family of solutions whose evolution converges to the periodic
solution (in the ODE case, these are called the isochrons). Even if the
phase space of the SDDE is naturally a space of functions, we show that
there are initial values which lead to solutions similar to that of the
ODE.


The method of proof bypasses the theory of existence, uniqueness,
dependence on parameters of SDDE. We consider the class of functions
of time that have a well defined behavior (e.g. periodic, or asymptotic
to periodic) and derive a functional equation which imposes that they
are solutions of the SDDE. These functional equations are studied using
methods of functional analysis. We provide a result in “a posteriori” for-
mat: Given an approximate solution of the functional equation, which
has some good condition numbers, we prove that there is true solution
close to the approximate one. Thus, we can use the result to validate
the results of numerical computations. The method of proof leads also
to practical algorithms. In a companion paper, we present the imple-
mentation details and representative results.


One feature of the method presented here is that it allows to ob-
tain smooth dependence on parameters for the periodic solutions and
their slow stable manifolds without studying the smoothness of the flow
(which seems to be problematic for SDDEs, for now the optimal result
on smoothness of the flow is C1).
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1. Introduction


Many causes in natural sciences take some time to generate an effect.
If one incorporates this delay in the models, one is lead to descriptions
of systems in which the derivatives of states are functions of the states at
previous times. These are commonly called delay differential equations.


In the case that the delay is constant (say 1), one can prescribe the data
in an interval r´1, 0s and then propagate the differential equation. This
leads to a rather satisfactory theory of existence and uniqueness and even
a qualitative theory [Dri84, Hal77, HVL93, DvGVLW95]. Note that the
natural phase space is a space of functions on r´1, 0s. This is an infinite
dimensional space.


When the delay is not a constant and depends on the state, one needs to
consider State-Dependent Delay Equations (SDDE for short). In contrast
with the constant delay case, the mathematical theory of SDDE has com-
plications. The paper [Wal03] made important progress for the appropriate
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phase space for SDDE. We refer to [HKWW06] for a very comprehensive
survey of the mathematical theory and the (rather numerous) applications.


In this paper, we consider a simple model (two-dimensional ordinary dif-
ferential equation with a limit cycle) and show that all solutions close to the
limit cycle present in this model persist (in some appropriate sense) when we
add a state-dependent delay perturbation. Models of the form considered
in this paper appear in several concrete problems in the natural sciences
(circuits, neuroscience, and population dynamics), see [HKWW06].


The result is subtle to formulate since the perturbation of adding a state-
dependent delay is very singular, it changes the nature of the equation:
the unperturbed case is an ODE and the perturbed case is an infinite-
dimensional problem. The basic idea is that we establish the existence
of some finite-dimensional families of solutions (in the phase space of the
SDDE), which resemble (in an appropriate sense) the solutions of the orig-
inal ODE. This allows to establish many other properties (e.g. dependence
on parameters) which may be false for general solutions of SDDE. We hope
that the method can be extended in several directions. For example, we
hope to produce higher dimensional families, families with other behaviors,
and more complicated models. The conjectural picture that appears is that
in SDDEs, even if the dynamics in a full Banach space of solutions is prob-
lematic, one can find a very rich set of solutions organized in families even
if the families may not fit together well and leave gaps, so that a general
theory may have problems [CJS63].


1.1. Overview. Let us start by an informal overview of the method. It is
known that in a neighborhood of a limit cycle of a 2-dimensional ODE, we
can find K : T ˆ r´1, 1s Ñ R2, and ω0 and λ0 in such a way that for any
θ, s, the function given by


xptq “ Kpθ ` ω0t, se
λ0tq (1.1)


solves the ODE, see [HdlL13]. The fact that all the functions of the form
(1.1) are solutions of the original ODE is equivalent to a functional equa-
tion for K, ω0 and λ0. Efficient methods to study the resulting functional
equation were presented in [HdlL13]. We will, henceforth, assume that K,
ω0, λ0 are known.


Similarly, for the perturbed case, when we impose that for fixed θ, s the
function of the form


xptq “ K ˝W pθ ` ωt, seλtq (1.2)


is a solution of our delay differential equation, we obtain a functional equa-
tion for W , ω, λ (see (2.6)), which we call “invariance equation”. Note that
the unknowns in (2.6) are the embedding W and the numbers ω, λ.


Our goal will be to solve (2.6) using techniques of functional analysis.
The equation is rather degenerate and our treatment has several steps. We
first find some asymptotic expansions in powers of s to a finite order, and
then, we formulate a fixed point problem for the remainder. Due to the







4 J. YANG, J. GIMENO, AND R. DE LA LLAVE


delay, information at previous times is needed. We anticipate a technical
problem is that the domain of definition of the unknown have to depend
on the details of the unknown. Similar problems appear in the theory of
center manifolds [Car81]. Here we have to resort to cut-offs and extensions.
After this process, we get a prepared equation, (2.7), which has the same
format as equation (2.6), and agrees with equation (2.6) in a neighborhood.
Solutions of the prepared equation which stay in the neighborhood will be
solutions of the original problem.


The main results of this paper is Theorem 10, which establish that with
respect to some condition numbers of the problem, verified for small enough
ε, given an approximate solution of the extended invariance equation (2.7) of
the problem, one obtain a true solution nearby. (This is sometimes referred
as “a posteriori” format.)


As in the case of center manifolds, the family of solutions found to the
original problem may depend on the extension considered.


1.2. Some comments on the results. In a geometric language, we can
describe our procedure as saying that we are finding an embedding of the
phase space of the ODE into the phase space of the SDDE in such a way
that the range of the embedding is foliated by solutions of the SDDE and
that the flow in this manifold is similar to the flow of the ODE. Note that
this bypasses the need of developing a general theory of solutions of the
SDDE. We only construct a 2-D manifold of solutions of the SDDE. For these
solutions, it is possible to discuss comfortably many desirable properties such
as smooth dependence on the model, etc.


Philosophies similar to that of this paper (finding solutions of functional
equations that inply the existence of solutions of special kinds) have already
been used in [HdlL17, HDlL16, CCdlL19] to study quasi-periodic solutions
of SDDE. For constant delay equations, we can find [Les10, KL12] for the
study of periodic solutions. The paper [KL17] studies specific models similar
to ours for constant delay perturbations. The paper [LdlL09] studies quasi-
periodic solutions analytically, [GMJ17] studies numerically unstable man-
ifolds near fixed points. The papers [Sie17], [CHK17], [HBC`16, MKW14]
study normal forms and numerical computations of periodic and quasi-
periodic solutions of SDDEs and obtain bifurcations and numerical solu-
tions. Even if the evolutions of the SDDEs considered above are difficult to
define as smooth evolutions, we believe that the results above can be un-
derstood as suggesting the existence of a subsystem of the evolution which
indeed experiences bifurcations. The careful numerical solutions of [CHK17]
can presumably be validated.


By solving the invariance equation, (2.7), one actually obtains a param-
eterization of the limit cycle and its isochrons (2-dimensional slow stable
manifold of the limit cycle). In other words, K ˝W pθ, 0q parameterizes the
limit cycle, and for fixed θ, we have K ˝W pθ, sq parameterizes the local slow
stable manifold of the point K ˝W pθ, 0q on the limit cycle. We remark that
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in some previous work, Chapter 10 of [HVL93], persistence of limit cycles
were studied with a different method in the setting of retarded functional
differential equations(RFDE). They have also studied infinite-dimensional
stable manifolds of periodic orbits of RFDE. In this paper, we study SDDE,
and get a parameterization of the submanifold of the infinite-dimensional
stable manifold, which corresponds to the eigenvalue of the time-T map
with largest modulus. In this sense, we think that the manifold in this pa-
per is practically more relevant than the infinite-dimensional manifolds. For
a more detailed comparison of the results of this paper with the study of
SDDE as evolutionary equations, see Section 4.3.


Of course, the notions of approximate solutions and that of solutions close
to the approximate ones, requires to specify a norm in space of functions. In
[HdlL13], it was natural to specify analytic norms. In this paper, however,
we use spaces of finitely differentiable functions. Indeed, we conjecture that
the solutions we produce are not more than finitely differentiable.


The a-posteriori format of Theorem 10 allows us to validate approximate
solutions produced even by non-rigorous methods. In that respect, we note
that the related paper [GYdlL19] develops numerical methods that produce
approximate solutions. Some papers that study formal expansions in the de-
lay are [CF80] for periodic solutions and bifurcations, mostly with constant
delay, and [CCdlL19] which studies periodic and quasiperiodic solutions for
SDDE (and even more general models such as those appearing in electrody-
namics).


Using Theorem 10, we obtain that the numerical solutions produced in
[GYdlL19], have true solutions nearby and that the formal expansion pro-
duced in [CCdlL19] are not just formal expansions but are asymptotics to
a true solution. For an earlier example or related philosophies, we mention
that asymptotic expansions for equations with small constant delay was
produced and validated in the paper [Chi03].


A rather subtle point is that we do not obtain uniqueness of the solution.
The reason is that the nature of the problem involves cutting off the pertur-
bation and the solution produced may depend on the cut-off function used.
Both the finite regularity and the lack of uniqueness due to the introduction
of a cut-off are reminiscent to effects found in the study of center manifolds
[Car81, Lan73]. Of course, since one of the goals of the paper is to remedy
the paucity of solutions of SDDEs, having many solutions is a feature not a
bug. The dependence of the solutions in the cut-off has to be small as the
delay tends to zero (note that the asymptotic expansions in [CCdlL19] do
not depend on the cut-off), but we expect that they are small in other senses
similar to the situation in center manifolds [Sij85]. We will not formulate
here results making precise this intuition.


We hope that the methods of this paper can be extended to prove the
existence of other finite-dimensional families of solutions that are not close
to families of solutions of the unperturbed ODE.
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1.3. Organization of the paper. We introduce the problem and formu-
late the equations to be solved in section 2. In Section 3 we present some
notations and some classical results in functional analysis which will be used
in the proof. We state our main results in section 4. We give an overview of
the proof in section 5. Detailed proofs of the results are given in section 6.


2. Formulation of the problem


We consider an ordinary differential equation in the plane


9xptq “ X0pxptqq, (2.1)


where xptq P R2, X0 : R2 Ñ R2 is analytic. We assume above equation (2.1)
admits a limit cycle. Clearly, there is a two dimensional family of solutions
to this ordinary differential equation. This family can be parameterized
e.g. by the initial conditions, but as we will see, there are more efficient
parameterizations near the limit cycle.


The goal of this paper is to study a state-dependent delay equation that
is a “small” modification of equation (2.1) in which we add some small term
for the derivative that depends on some previous time. Adding some depen-
dence on the solution at previous times, arises naturally in many problems.
Limit cycles appear in feedback loops and if the feedback loops have a de-
layed effect, which depends on the present state, to incorporate them in the
model, we are lead to:


9xptq “ Xpxptq, εxpt´ rpxptqqqq, 0 ď ε ! 1 (2.2)


Where xptq P R2, X : R2 ˆ R2 Ñ R2 is analytic, the state-dependent delay
function r : R2 Ñ r0, hs is as smooth as we need. The equation (2.2) is
formally a perturbation of (2.1) with Xpx, 0q “ X0pxq.


We can rewrite (2.2) as


9xptq “ Xpxptq, 0q ` εP pxptq, xpt´ rpxptqqq, εq, (2.3)


where we define,


εP pxptq, xpt´ rpxptqqq, εq “ Xpxptq, εxpt´ rpxptqqq ´Xpxptq, 0q.


The question we want to address in this paper is to find a two dimensional
family of solutions of (2.2), which resembles the two dimensional family
of solutions of (2.1). This is a much simpler problem than developing a
general theory of existence of solutions of an SDDE, which is a rather difficult
problem. Nevertheless, persistence of some family of solutions is of physical
interest.


Note that, when ε ą 0 the equation (2.3) is an SDDE, which is an equation
of a very different nature from the equation when ε “ 0, which is an ODE.
Hence, we are facing a very singular perturbation in which the nature of
the problem changes drastically from an ODE – whose phase space is R2 to
an SDDE – whose natural phase space is a space of functions. The precise
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meaning of the continuation of the unperturbed solutions into solutions of
the perturbed problem is somewhat subtle.


2.1. Limit cycles and isochrons for ODEs. Under our assumption,
there exists a limit cycle in the unperturbed equation (2.1). In a neigh-
borhood of the limit cycle (stable periodic orbit), points have asymptotic
phases(see [Win75, Guc75]). The points sharing the same asymptotic phase
as point p on the limit cycle is the stable manifold for point p. The stable
manifold of the limit cycle is foliated by the stable manifolds for points on
the limit cycle (sometimes referred as stable foliations). The stable man-
ifolds for points on the limit cycle are also called isochrons in the biology
literature, see [Guc75], [Win75].


According to [HdlL13], we can find a parameterization of the limit cycle
and the isochrons in a neighborhood of the limit cycle. More precisely, there
exists real numbers ω0 ą 0, λ0 ă 0, and an analytic local diffeomorphism
K : Tˆ r´1, 1s Ñ R2, such that


X0pKpθ, sqq “ DKpθ, sq


ˆ


ω0


λ0s


˙


, (2.4)


where K is periodic in θ, i.e. Kpθ ` 1, sq “ Kpθ, sq. Saying that K solves
(2.4) is equivalent to saying that for fixed parameters θ and s, the function
xptq “ Kpθ ` ω0t, se


λ0tq solves (2.1) for all t such that |seλ0t| ă 1. Notice
that when s “ 0, Kpθ, 0q parameterizes the limit cycle, and for a fixed θ
with varying s, we get the local stable manifold of the point Kpθ, 0q.


Note that geometrically, K can be viewed as a change of coordinates, un-
der which the original vector field is equivalent to the vector field X 10pθ, sq “
pω0, λ0sq in the space T ˆ r´1, 1s. We could have started with this vector
field X 10 and then added some perturbation to it. However, to keep contact
with applications, we decided not to do this.


Remark 1. As pointed out in [HdlL13], the K solving (2.4) can never be
unique. If Kpθ, sq is a solution of (2.4), then for any θ0, b ‰ 0, Kpθ`θ0, bsq
will also be a solution of (2.4). [HdlL13] also shows that this is the only
source of non-uniqueness. We will call such b scaling factor, and such θ0


phase shift. Note that by using a different b, we can change the domain of
K. However, no matter how the domain changes, s has to lie in a finite
interval.


In this paper, for the equation after perturbation (2.2), we will show if ε is
small enough, the limit cycle and its isochrons persist as limit cycle and its
slow stable manifolds of the delayed model. We will use the name isochrons
to denote the slow stable manifolds and distinguish them from the infinite
dimensional stable manifolds similar to the one established by [HVL93].
Meanwhile, we will find a parameterization of them. More precisely, we will
find ω ą 0, λ ă 0, and W which maps a subset of T ˆ R to a subset of
TˆR, such that for small s, K ˝W pθ, sq gives us a parameterization of the
limit cycle as well as of its isochrons in a neighborhood. We assume that







8 J. YANG, J. GIMENO, AND R. DE LA LLAVE


W can be lifted to a function from R2 to R2 (we will use the same letter to
denote the function before and after the lift) which satisfies the periodicity
condition:


W pθ ` 1, sq “W pθ, sq ` p 1
0 q . (2.5)


We remark that K ˝W being a parameterization of the limit cycle and
its isochrons is the same as for given θ, and s in domain of W , xptq “
K ˝W pθ ` ωt, seλtq solving (2.2) for t ě 0.


2.2. The invariance equation and the prepared invariance equation.
Substitute xptq “ K ˝W pθ`ωt, seλtq into (2.3), let t “ 0, with the fact that
DK is invertible, we get xptq “ K ˝W pθ ` ωt, seλtq solves equation (2.2) if
and only if W satisfies


DW pθ, sq


ˆ


ω
λs


˙


“


ˆ


ω0


λ0W2pθ, sq


˙


` εY pW pθ, sq,ĂW pθ, sq, εq, (2.6)


where W2pθ, sq is the second component of W pθ, sq, ĂW is the term caused
by the delay:


ĂW pθ, sq “W pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq,


and


Y pW pθ, sq,ĂW pθ, sq, εq “ pDKpW pθ, sqqq´1P pKpW pθ, sqq,KpĂW pθ, sqq, εq.


Note that even if ĂW is typographically convenient, ĂW is a very compli-
cated function of W , it involves several compositions.


Now we need to look at equation (2.6) more closely and specify the domain
and range of W . One cannot define W on T ˆ r´b, bs, where b ą 0 is


a constant. Indeed, observing the second component in expression of ĂW ,
se´λr˝KpW pθ,sqq, one will note that |se´λr˝KpW pθ,sqq| ą |s|. This will drive
us out of the domain of W if W is defined for second component lying in a
finite interval. Therefore, W has to be defined for s on the whole real line.
So we let W : T ˆ R Ñ T ˆ R. There is another technical issue as pointed
out in the following Remark 2.


Remark 2. When ε is small, we expect W to be close to the identity map.
Then for s far from 0, W pθ, sq does not lie in the domain of K, thus the
invariance equation is not well defined.


Similar to the study of center manifolds. We will use cut-off functions to
resolve the above issues.


We transform our original equation (2.6) into a well-defined equation of
the same format:


DW pθ, sq


ˆ


ω
λs


˙


“


ˆ


ω0


λ0W2pθ, sq


˙


` εY pW pθ, sq,ĂW pθ, sq, εq, (2.7)







STATE-DEPENDENT DELAY PERTURBATION TO AN ODE 9


where Y is defined on pT ˆ Rq2 ˆ R`, and r ˝K is defined on T ˆ R, with


slight abuse of notation, we still denote the term caused by the delay as ĂW :


ĂW pθ, sq “W pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq.


Following standard practice in theory of center manifolds of differential
equations, see [Car81]. We introduce the extensions as follows:


‚ For r ˝K which is defined only on Tˆ r´1, 1s, we define a function
r ˝K on TˆR, which agrees with r ˝K on Tˆ r´1


2 ,
1
2 s, and is zero


outside of Tˆ r´1, 1s.
‚ For Y : pTˆr´1, 1sq2ˆR` Ñ R2, we define Y : pTˆRq2ˆR` Ñ R2,


which agrees with Y on the set pTˆr´1
2 ,


1
2 sq


2ˆR`, and is zero outside


pTˆ r´1, 1sq2 ˆ R`.


To achieve above extensions, let φ : RÑ r0, 1s be a C8 cut-off function:


φpxq “


#


1 if |x| ď 1
2 ,


0 if |x| ą 1.
(2.8)


We define


r ˝Kpθ, sq “ r ˝Kpθ, sqφpsq,


and,


Y pW pθ, sq,ĂW pθ, sq, εq “ Y pW pθ, sq,ĂW pθ, sq, εqφpW2pθ, sqqφpĂW2pθ, sqq.


After these extensions, the main equation (2.6) is turned into the well-
defined equation (2.7). Note that, Y , r ˝K defined above have bounded
derivatives in their domain up to any order.


Remark 3. In the definition of cut-off function, one can let φ to vanish for
|x| ą c1 where the constant c1 ă 1, and let φ “ 1 for |x| ď c2 where the
constant c2 ă c1.


Remark 4. The use of the cut-off function here is very similar to the use
of cut-offs in the study of the center manifolds in the literature, if we choose
a different cut-off function φ, we will possibly end up with a different W ,
which solves (2.7) with the new cut-off function φ.


Remark 5. If instead of having a stable periodic orbit, the unperturbed ODE
has an unstable periodic orbit, then λ0 in (2.4) is positive. Analogous results
to Theorems 9 and 10 will give us the parameterization of the periodic orbit
and the unstable manifold for small ε. The same proof, only with minor
modifications, will work. At the same time, the invariance equation (2.6)
will be well-defined for a suitably chosen domain for W , we do not need to do
extensions. Similarly, the idea here will also work for advanced equations,
which have the same format as equation (2.2), with r : R2 Ñ r´h, 0s. We
omit the details for these cases.
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2.3. Representation of the unknown function. In order to study the
functional equation (2.7), we consider W of the form:


W pθ, sq “
N´1
ÿ


j“0


W jpθqsj `Wąpθ, sq, (2.9)


solving (2.7). Where W 0pθq is the zeroth order term in s, W jpθqsj is the
j-th order term in s, Wąpθ, sq is of order at least N in s. W j : TÑ Tˆ R,
and Wą : T ˆ R Ñ T ˆ R. From now on, we will use superscripts to
denote corresponding orders, and subscripts, as we did before, to denote
corresponding components.


We consider lifts of W 0pθq, W jpθq, and Wąpθ, sq, which will be functions
from R Ñ R2 or R2 Ñ R2. We will not distinguish notations for the func-
tions before or after lifts. According to the periodicity condition for W in
(2.5), the lifted functions satisfy the following periodicity conditions:


W 0pθ ` 1q “W 0pθq ` p 1
0 q , (2.10)


W jpθ ` 1q “W jpθq, (2.11)


Wąpθ ` 1, sq “Wąpθ, sq. (2.12)


Based on the form of W in (2.9), we can match coefficients of different
powers of s in the invariance equation (2.7). Thus, the invariance equation
(2.7) is equivalent to a sequence of equations. As we will see, the equations
for W 0 and W 1 are special. The equation for W 0 is very nonlinear, the
equation for W 1 is a relative eigenvector equation. The equations for W j ’s
are all similar. The equation for Wą is hard to study, it has 2 variables. As
we will see later, for small enough ε, Wą is the only case where we need the
cut-off.


2.3.1. Invariance equation for zero order term. Matching zero order terms
of s in (2.7), we obtain the equation for the unknowns ω and W 0:


ω
d


dθ
W 0pθq ´


ˆ


ω0


λ0W
0
2 pθq


˙


“ εY pW 0pθq,ĂW 0pθ;ωq, εq, (2.13)


where
ĂW 0pθ;ωq “W 0


`


θ ´ ωr ˝KpW 0pθqq
˘


is the function caused by delay.


2.3.2. Invariance equation for first order term. Equating the coefficients of
s1 in equation (2.7), we obtain the equation for the unknowns λ and W 1:


ω
d


dθ
W 1pθq ` λW 1pθq ´


ˆ


0
λ0W


1
2 pθq


˙


“ εY
1
pθ, λ,W 0,W 1, εq, (2.14)


where Y
1
pθ, λ,W 0,W 1, εq is the coefficient of s in Y . Y


1
pθ, λ,W 0,W 1, εq is


linear in W 1. We will specify it later in (6.20).
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2.3.3. Invariance equation for the j-th order term. For 2 ď j ď N ´ 1,
matching the coefficients of sj , the equation for the unknown W j is:


ω
d


dθ
W jpθq`λjW jpθq´


ˆ


0


λ0W
j
2 pθq


˙


“ εY
j
pθ, λ,W 0,W j , εq`Rjpθq, (2.15)


where Y
j
pθ,W 0,W j , εq is the coefficient of sj in Y . Y


j
pθ,W 0,W j , εq is


linear in W j . We will specify it later in (6.32). and Rj is a function of θ
which depends only on W 0, W 1,. . . , W j´1.


Having W 0, . . . ,WN´1, we are ready to consider Wą. As we will see, the
truncation number N could be chosen as any integer larger than 1 to obtain
the main result of this paper.


2.3.4. Invariance equation for higher order term. For Wąpθ, sq, it solves the
equation:


pωBθ ` sλBsqW
ąpθ, sq ´


ˆ


0
λ0W


ą
2 pθ, sq


˙


“ εY ąpWą, θ, s, εq (2.16)


where Y ąpWą, θ, s, εq is the term of order at least N in s of Y , which will
be specified later in (6.40).


3. Some basic definitions and basic results on function spaces


In this section, we collect some standard results on the spaces of contin-
uously differentiable functions that we will use.


We will denote by CLpY,Xq the space of all functions from (an open
subset of) a Banach space Y to a Banach space X, with uniformly bounded
continuous derivatives up to order L. We endow CLpY,Xq with the norm


}f}CL “ max
0ďjďL


sup
ξPY


}Djfpξq}Y bjÑX ,


so that CLpY,Xq is a Banach space.
Note that we include in the definition that the derivatives are uniformly


bounded. This is not the same as the Whitney topology on spaces of L
times differentiable functions in a σ-compact manifold [GG73, p. 40], which
is a Fréchet topology. Even more general definitions appear in [KM97].


We use CLBpY,Xq to denote the closed subset of CLpY,Xq which consists
of functions with } ¨ }CL norm bounded by constant B.


We will also denote CL`LippY,Xq the space of CL functions with L-th
derivative Lipschitz. We define


LippDLfq “ sup
ξ1‰ξ2


}DLfpξ1q ´D
Lfpξ2q}Y bLÑX


}ξ1 ´ ξ2}Y
,


and the norm } ¨ }CL`LippY,Xq as the maximum of the } ¨ }CL norm and


LippDLfq.
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Define CL`LipB pY,Xq to be the closed subset of the space CL`LippY,Xq
consisting of all functions of norm } ¨ }CL`LippY,Xq bounded by the constant
B.


3.1. Closure of Cr balls in weak topology. We quote proposition A2
in [Lan73], as it will be used several times throughout this paper. It can be


interpreted as CL`Lip1 pY,Xq is closed under pointwise weak topology on X.
A related notion, Quasi-Banach space, was used in [HT97].


Lemma 6 (Lanford). Let punqnPN be a sequence of functions on a Banach
space Y with values on a Banach space X. Assume that for all n, y


}Djunpyq} ď 1 j “ 0, 1, 2, . . . , k,


and that each Dkun is Lipschitz with Lipschitz constant 1. Assume also that
for each y, the sequence punpyqq converges weakly(i.e., in the weak topology
of X) to upyq. Then,
(a) u has a Lipschitz k-th derivative with Lipschitz constant 1;
(b) Djunpyq converges weakly to Djupyq for all y and j “ 1, 2, . . . , k.


Note that the assumption of weak convergence of punpyqq, and part (b)
in the conclusion implies that }Djupyq} ď 1 for all y and j “ 0, 1, 2, . . . , k.


As mentioned in [Lan73], if X and Y are finite dimensional, the above
lemma is just an application of Arzela-Ascoli Theorem. This is actually the
only case we need. For the proof of above lemma in the general case, we
refer to [Lan73].


3.2. Faà di Bruno formula. We also quote Faà di Bruno formula, which
deals with the derivatives of composition of two functions.


Lemma 7. Let gpxq be defined on a neighborhood of x0 in a Banach space
E, and have derivatives up to order n at x0. Let fpyq be defined on a
neighborhood of y0 “ gpx0q in a Banach space F , and have derivatives up to
order n at y0. Then, the nth derivative of the composition hpxq “ f rgpxqs
at x0 is given by the formula


hn “
n
ÿ


k“1


fk
ÿ


ppn,kq


n!
n
ź


i“1


gλii
pλi!qpi!qλi


. (3.1)


In the above expression, we set


hn “
dn


dxn
hpx0q, fk “


dk


dyk
fpy0q, gi “


di


dxi
gpx0q,


and


ppn, kq “


#


pλ1, . . . , λnq : λi P N,
n
ÿ


i“1


λi “ k,
n
ÿ


i“1


iλi “ n


+


.


This can be proved by the Chain Rule and induction. See [AR67] for a
proof.
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3.3. Interpolation. The interpolation inequalities will also be used many
times. One can refer to [Had98, Kol49, dlLO99] for some related work. We
quote the following result from [dlLO99]:


Lemma 8. Let U be a convex and bounded open subset of a Banach space
E, F be a Banach space. Let r, s, t be positive numbers, 0 ď r ă s ă t, and
µ “ t´s


t´r . There is a constant Mr,t, such that if f P CtpU,F q, then


}f}Cs ďMr,t}f}
µ
Cr}f}


1´µ
Ct .


4. Main results


4.1. Results for prepared equations. Under the assumption that the
map Y : pT ˆ Rq2 ˆ R` Ñ R2 has bounded derivatives up to any order,
r ˝K : Tˆ RÑ r0, hs has bounded derivatives up to any order, we have:


Theorem 9 (Zero Order). For any given integer L ą 0, there is ε0 ą 0 such
that when 0 ď ε ă ε0, there exist an ω ą 0 and an L times differentiable
map W 0 : T Ñ T ˆ R, with L-th derivative Lipschitz, which solve equation
(2.13).


Moreover, for initial guess ω0, and W 0,0pθq satisfying the periodicity con-
dition (2.10). If they satisfy the invariance equation (2.13) with error E0pθq,
then there exist unique ω, W 0pθq(satisfying the periodic condition (2.10))
closed by solving the same equation exactly, with


}W 0,0 ´W 0}Cl ďC}E0}
1´ l


L


C0 , 0 ď l ă L (4.1)


|ω0 ´ ω| ďC}E0}C0 , (4.2)


for some constant C, where C may depend on ε, ω0, λ0, l, L, and prior
bound for }W 0,0}L`Lip. In fact, W 0 has derivatives up to any order.


Moreover,


Theorem 10 (All Orders). For any given integers N ě 2, and L ě 2`N ,
there is ε0 ą 0 such that when 0 ď ε ă ε0, there exist ω ą 0, λ ă 0, and
W : Tˆ RÑ Tˆ R of the form


W pθ, sq “
N´1
ÿ


j“0


W jpθqsj `Wąpθ, sq (4.3)


which solve the equation (2.7) in a neighborhood of s “ 0.
Where W 0 : T Ñ T ˆ R is L times differentiable with Lipschitz L-th


derivative. For 1 ď j ď N´1, W j : TÑ TˆR is pL´1q times differentiable
with Lipschitz pL´ 1q-th derivative, and Wą is of order at least N in s and
is jointly pL ´ 2 ´ Nq times differentiable in θ and s, with pL ´ 2 ´ Nq-th
derivative Lipschitz.


Moreover, if ω0, W 0,0pθq, λ0, W 1,0pθq, W j,0pθq, and Wą,0pθ, sq satisfy the
invariance equations (2.13), (2.14), (2.15), and (2.16), with errors E0pθq,
E1pθq, Ejpθq, and Eąpθ, sq, respectively, then there are ω, W 0pθq, λ, W 1pθq,
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W 1pθq, and Wąpθ, sq which solve equations (2.13), (2.14), (2.15), and (2.16).
Therefore, equation (2.7) is solved by ω, λ, and W pθ, sq of above form (4.3).
For 0 ď l ď L´ 2´N , we have


}W pθ, sq ´
N´1
ÿ


j“0


W j,0pθqsj ´Wą,0pθ, sq}Cl


ď Cp
N´1
ÿ


j“0


}Ej}C0 |s|j ` }Eą}0,N |s|
N q


1´ l
pL´2´Nq ,


(4.4)


|ω ´ ω0| ď Cp}E0}C0q,


|λ´ λ0| ď Cp}E1}C0q, (4.5)


for some constant C depending on ε, ω0, λ0, N , l, L, prior bounds for
}W 0,0}L`Lip, }W


j,0}L´1`Lip, j “ 1, . . . , N ´ 1, and derivatives of Wą,0.


Remark 11. In Theorem 9, W 0pθq is unique up to a phase shift.


Remark 12. The above Theorems are in a-posteriori format. The main
input needed is some function that satisfies the invariance equation approx-
imately. This can be numerical computations (that indeed produce good ap-
proximate solutions) or Lindstedt series, see for example [CCdlL19].


Notice that with these Theorems, we do not need to analyze the procedure
used to produce the approximate solutions. The only thing that we need to
establish is that the solutions produced satisfy the invariance equation up to
a small error.


The a-posteriori format of the theorem leads to automatic Hölder depen-
dence of the solutions W 0 on ε and Y .


It suffices to observe that if we consider W 0 solving the invariance equa-
tion for some ε1, Y1, it will solve the invariance equation for ε2, Y2 up to an


error which is bounded in the C l norm by C p|ε1 ´ ε2| ` }Y1 ´ Y2}C0q
1´ l


L


As a matter of fact, one of the advantages of our approach is that it leads
very easily to smooth dependence on parameters.


Theorem 13. Consider a family of functions Yη, rη as above, where η lies
in an open interval I Ă R. Assume that Yη and rη are smooth in their inputs
as well as in η, with bounded derivatives.


Then for any positive integer L, there is an ε0 small enough such that
when ε ă ε0, for each η P I we can find ωη, W 0


η solving (2.13).


Furthermore, the W 0
η pθq is jointly CL`Lip in η, θ.


Theorem 14. Under assumption of Theorem 13, for any given integers
N ě 2, and L ě 2`N , there is an ε0 small enough such that when ε ă ε0,


for each η P I, we can find ωη, W 0
η , λη, W j


η , j “ 1, . . . , N´1, and Wą
η pθ, sq,


which solve the invariance equations (2.13), (2.14), (2.15), and (2.16).


Furthermore, W 0
η pθq is jointly CL`Lip in η, θ; W j


η pθq, j “ 1, . . . , N ´ 1,


are jointly CL´1`Lip in η, θ; Wą
η pθ, sq is jointly CL´2´N`Lip in η, θ, and


s.
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Note that the regularity conclusions of Theorem 13 can be interpreted
in a more functional form as saying that the mapping that to η associates
W 0
η is C``Lip when the space of embedding W is given the CL´` topology.


Similar interpretation can be made for Theorem 14. This functional point
of view is consistent with the point of view of RFDE where the phase space
is infinite dimensional.


4.2. Results for original problem in a neighborhood of the limit
cycle. Note that to find the low order terms, W 0, . . . ,W j , for small ε, the
extensions are not needed. Heuristically, the low order terms are infinites-
imals. Hence, to compute them, it suffices to know the expansion of the
vector field.


More precisely, if we take the initial guess for zero order term as W 0,0pθq “
`


θ
0


˘


, the error for this initial guess is of order ε. Then by theorem 9, the


true solution W 0 is within a distance of order ε from W 0,0pθq. Therefore,
with small choice of ε, we can have supθPT |W


0
2 pθq| ă


1
2 , we are reduced to


the case without extension, since


r ˝KpW 0pθqq “ r ˝KpW 0pθqq,


Y pW 0pθq,ĂW 0pθ;ωq, εq “ Y pW 0pθq,ĂW 0pθ;ωq, εq.


where,
ĂW 0pθ;ωq “W 0pθ ´ ωr ˝KpW 0pθqqq.


Then we can rewrite the invariance equation for W 0, (2.13), as:


ω
d


dθ
W 0pθq ´


ˆ


ω0


λ0W
0
2 pθq


˙


“ εY pW 0pθq,ĂW 0pθ;ωq, εq. (4.6)


Similar arguments apply for the equations for W 1 and W j ’s if we look at


expressions of Y
1


in (6.20), Y
j


in (6.32), and form of Rj .
We can find 0 ă s0 ă


1
2 , such that W pT ˆ r´s0, s0sq Ă T ˆ r´1


2 ,
1
2 s, and


ĂW pT ˆ r´s0, s0sq Ă T ˆ r´1
2 ,


1
2 s. Therefore, the original problem is solved


in a neighborhood of the limit cycle by applying the results in section 4.1.
For the original problem in section 2, we have


Corollary 15 (Limit Cycle). When ε ă ε0 in Theorem 9 is so small that
supθPT |W


0
2 pθq| ă


1
2 , equation (2.2) admits a limit cycle close to the limit


cycle of the unperturbed equation. If ω, W 0 solve the invariance equation
(4.6), then K ˝W 0pθq gives a parameterization of the limit cycle of equation
(2.2), i.e. for any θ, K ˝W 0pθ ` ωtq solves equation (2.2) for all t.


We can also find a 2-parameter family of solutions close to the limit cycle:


Corollary 16 (Isochrons). For small ε as in previous Corollary 15, there are
isochrons for the limit cycle of equation (2.2). If ω, λ, and W : TˆRÑ TˆR
solve the extended invariance equation (2.7), then there exists 0 ă s0 ă


1
2 ,


such that K ˝W pθ, sq, |s| ď s0 gives a parameterization of the limit cycle
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with its isochrons in a neighborhood, i.e. for any θ, and s, with |s| ď s0,
K ˝W pθ ` ωt, seλtq solves equation (2.2) for all t ě 0.


Dependence on parameters results in Theorem 13 and 14 apply.


4.3. Comparison with Results on RFDE based on time evolution.
The persistence of a periodic solution under perturbation for retarded func-
tional differential equation (RFDE) is presented in Chapter 10 of [HVL93],
notably Theorem 4.1. In this section, we present some remarks that can help
the specialists to compare our results with those obtainable considering the
time evolution of RFDEs.


The set up presented there does not seem to apply to our case since the
phase space considered in [HVL93] is the space of continuous functions on
an interval, namely, C0r´h, 0s, and they require differentiability properties
of the equation which are not satisfied in our case. Note also that we can
obtain smooth dependence on parameters (see Theorem 13). Obtaining such
smooth dependence using the methods based on the evolutionary approach
would require obtaining regularity of the evolution operator, which does not
seem to be available.


More precisely, if we employ the notation xt as a function defined on
r´h, 0s, with


xtpsq “ xpt` sq


for s P r´h, 0s, we can write our SDDE (2.2) as


9xptq “ F pxt, εq,


where we define F pφ, εq :“ Xpφp0q, εφp´rpφp0qqqq. For ε “ 0, we have
an ODE, which can be viewed as a delay equation, with a non-degenerate
periodic orbit (see [HVL93]). However, above F cannot be continuously
differentiable in φ if φ is only continuous. This obstructs application of
Theorem 4.1 for RFDE in [HVL93].


It is very interesting to study whether a similar method to the one in
[HVL93] can be extended to our case with some variations of the phase
space (solution manifold, see [Wal03]). However, since only C1 regularity of
the evolution has been proved([Wal03]), (higher regularity of the evolution
in SDDE seems problematic), one cannot hope to obtain the dependence on
parameters to be more regular than C1. On the other hand, the method
in this paper allows to get rather straightforwardly higher smoothness with
respect to parameters. See Theorem 13. We mention that some progress in
continuation of periodic orbits is in [MPNP94].


Considering RFDE’s as evolutions in infinite dimensional phase spaces,
[HVL93] establishes the existence of infinite-dimensional strong stable man-
ifolds for periodic orbits corresponding to the Floquet multipliers smaller
than a number.


Again, we remark that there are some technical issues of regularity of evo-
lutions in phase space of SDDE to define stable manifolds and even stability.
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We hope that these regularity issues of the evolution can be made precise
(using techniques as in [Wal03, MNnO17, MPN11]).


Nevertheless, there is a very fundamental difference between the manifolds
we consider and those in [HVL93].


If we consider the unperturbed ODE as an RFDE in an infinite dimen-
sional phase space, the Floquet multipliers are 1 with multiplicity 1, exp pλ0ω0


q


with multiplicity 1, and 0 (with infinite multiplicity). With C1-smoothness
of the evolution as in [Wal03], under small perturbation, we would have the


Floquet multipliers be similar to those (one exactly 1, one close to exppλ0ω0
q


and infinitely many near 0).
The theory developed in [HVL93] attaches an infinite-dimensional man-


ifold to the most stable part of the spectrum. That is the strong stable
manifold.


The manifold that we consider here, in the infinite-dimensional phase
space, is attached to the least stable Floquet multiplier, hence it is a slow
stable manifold from the infinite-dimensional point of view.


We think that the finite-dimensional manifold we obtain are more prac-
tically relevant than the strong stable manifold. We expect that infinitely
many modes will die out the fastest and, therefore, be hard to observe.
All the solutions of the full problem will be asymptotically similar to the
solutions we consider. In summary, solutions close to the limit cycle will
converge to the limit cycle tangent to the slow stable manifolds described
here. One problem to make all this precise is that the evolution is only
known to be C1.


Our motivation is to obtain solutions which resemble solutions of the
ODE, in accordance with the physical intuition that the solutions in the
perturbed problem – in spite of the singular nature of the perturbation –
look similar to those of the unperturbed problem (this is the reason why
relativity and its delays were hard to discover).


One of the features of the formalism in this paper is that it allows to
describe in a unified way the solutions of the SDDE in an infinite dimensional
space and the finite dimensional solutions of the unperturbed ODE problem.


Of course in this paper, we only deal with models of a very special kind
(we indeed have the hope that the range of applicability of the method can
be expanded; the models considered in this paper are a proof of concept)
but we obtain rather smooth invariant manifolds and smooth dependence
on parameters with high degree of differentiability. Furthermore, the proof
presented here leads to algorithms to compute the limit cycles and their
manifolds. These algorithms are practical and have been implemented, see
[GYdlL19].


It is also interesting to investigate whether evolution based methods lead
to computational algorithms [Gim19] and compare them with the algorithms
based on functional equations as in [GYdlL19].
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5. Overview of the proof


In equation (2.13), ω and W 0 are unknowns. Under a choice of the phase,
we define an operator such that its fixed point solves (2.13). We will show
that when ε is small enough, the operator is a “C0” contraction and maps
a CL`Lip ball to itself. Then one obtains the existence of the fixed point
pω,W 0q, and that W 0 in the fixed point has some regularity. Therefore,
equation (2.13) is solved.


In equation (2.14), λ and W 1 are unknowns. We will impose an appro-
priate normalization when defining the operator to make sure the solution
is uniquely found, and that W is close to the identity map with appropriate
scaling factor. Then similar to above case, for small enough ε, this operator
has a fixed point pλ,W 1q in which W 1 has some regularity.


In equation (2.15), W j is the only unknown. We define an operator
which is a contraction for small enough ε. The operator has a fixed point
with certain regularity solving the equation.


In equation (2.16), Wą is an unknown function of 2 variables. We will
define an operator on a function space with a weighted norm, then prove for
small ε, this operator has a fixed point in this function space, which solves
the equation (2.16).


We emphasis again that for small enough ε, the equation for Wą is the
only place where extension is needed. (Recall section 4.2)


There are finitely many smallness conditions for ε, so there are ε’s which
satisfy all the smallness conditions.


Same idea will be used for proving the smooth dependence on parameters.


6. Proof of the main results


6.1. Zero Order Solution. In this section, we prove our first result, The-
orem 9.


Recall (2.13), invariance equation for ω and W 0, as in section 2.3, which
is obtained by setting s “ 0 in equation (2.7).


Componentwise, W 0 “ pW 0
1 ,W


0
2 q, and Y “ pY 1, Y 2q, we have the equa-


tions as:


ω
d


dθ
W 0


1 pθq ´ ω0 “ εY 1pW
0pθq,ĂW 0pθ;ωq, εq, (6.1)


and


ω
d


dθ
W 0


2 pθq ´ λ0W
0
2 pθq “ εY 2pW


0pθq,ĂW 0pθ;ωq, εq. (6.2)
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Taking periodicity condition (2.10) into account, we define an operator
Γ0 as follows:


Γ0


¨


˝


a
Z1


Z2


˛


‚pθq “


¨


˝


Γ0
1pa, Zq


Γ0
2pa, Zqpθq


Γ0
3pa, Zqpθq


˛


‚


“


¨


˚


˝


ω0 ` ε
ş1
0 Y 1pZpθq, rZpθ; aq, εqdθ


1
Γ0
1pa, Zq


`


ω0θ ` ε
şθ
0 Y 1pZpσq, rZpσ; aq, εqdσ


˘


ε
ş8


0 eλ0tY 2pZpθ ´ atq, rZpθ ´ at; aq, εqdt


˛


‹


‚


,


(6.3)


Notice that if Γ0 has a fixed point pa˚, Z˚q, then (2.13) are solved by a˚


and Z˚, at the same time, periodic condition (2.10) is satisfied.


Remark 17. As we can see, the operator Γ0 will depend on ε, however, to
simplify the expression, we will not include ε in the notation of the operator
Γ0.


Remark 18. Similar to Remark 1, we will not have uniqueness of the so-
lution to invariance equation (2.13). Once we have a solution W 0pθq to the
equation, for any θ0, W 0pθ` θ0q will also solve the equation, which is called
phase shift. This is indeed the only source of non-uniqueness.


By considering the operator (6.3), we fix a phase by Γ0
2pa, Zqp0q “ 0.


For the domain of Γ0, we consider a closed interval I0 “ ta : |a´ω0| ď
ω0
2 u.


For a fixed positive integer L, define a subset of the space of functions which
are L times differentiable, with Lipschitz L-th derivative as follows:


CL`Lip0 “ tf | f :TÑ Tˆ R, f can be lifted to a function from R to R2,


still denoted as f,which satisfies fpθ ` 1q “ fpθq ` p 1
0 q ,


f1p0q “ 0, }f}L`Lip ď B0u, (6.4)


where


}f}L`Lip “ max
i“1,2,k“0,...,L


t sup
θPr0,1s


}f
pkq
i pθq}, Lippf


pLq
i qu.


Define D0 “ I0ˆCL`Lip0 , then Γ0 is defined on D0. We have the following:


Lemma 19. There exists ε0 ą 0, such that when ε ă ε0, Γ0pD0q Ă D0.


Proof. For pa, Zq P D0, by assumption, we have that Y 1pZpθq, rZpθ; aq, εq is
bounded by a constant which is independent of choice of pa, Zq in D0. Then,


one can choose ε small enough such that Γ0
1pa, Zq “ ω0`ε


ş1
0 Y 1pZpθq, rZpθ; aq, εqdθ


is in I0.
Now consider Γ0


2pa, Zqpθq “
1


Γ0
1pa,Zq


`


ω0θ ` ε
şθ
0 Y 1pZpσq, rZpσ; aq, εqdσ


˘


.


First we observe that


Γ0
2pa, Zqpθ ` 1q “ Γ0


2pa, Zqpθq ` 1.
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Then we need to check bounds for the derivatives


d


dθ
Γ0


2pa, Zqpθq “
1


Γ0
1pa, Zq


`


ω0 ` εY 1pZpθq, rZpθ; aq, εq
˘


.


By Faá di Bruno’s formula in Lemma 7, for 2 ď n ď L, dn


dθn Γ0
2pa, Zqpθq will


be a polynomial of a common factor ε
Γ0
1pa,Zq


, each term will contain products


of derivatives of Y 1, Z, and r ˝K up to order pn ´ 1q. By assumption on
Y 1 and r ˝K, for pa, Zq P D0, if we choose B0 to be larger than 2, then for
small enough ε, Γ0


2pa, Zqpθq on r0, 1s has derivatives up to order L bounded
by B0 and L´ th derivative Lipschitz with Lipschitz constant less than B0.


For Γ0
3pa, Zqpθq “ ε


ş8


0 eλ0tY 2pZpθ ´ atq, rZpθ ´ at; aq, εqdt. It satisfies


Γ0
3pa, Zqpθ ` 1q “ Γ0


3pa, Zqpθq.


To establish bounds for the derivatives of Γ0
3pa, Zqpθq, we apply a similar


argument as above. Notice that for n ď L, Bn


BθnY 2pZpθ´ atq, rZpθ´ at; aq, εq


will be a polynomial with each term a product of derivatives of Y 2, Z,
and r ˝K up to order n. With regularity of Y 2, and r ˝K, for pa, Zq P D0,


| B
n


BθnY 2pZpθ´atq, rZpθ´atq, εq| will be bounded. Therefore, for small enough


ε, Γ0
3pa, Zq has derivatives up to order L bounded by B0 and its L ´ th


derivative is Lipschitz with Lipschitz constant less than B0.
If we take ε0 such that above conditions are satisfied at the same time,


then for ε ă ε0, we have Γ0pD0q Ă D0. �


We now define a distance on D0, which is essentially C0 distance. Under
this distance, the space D0 is complete. For pa, Zq and pa1, Z 1q in D0,


dppa, Zq, pa1, Z 1qq “ |a´ a1| ` }Z ´ Z 1}, (6.5)


where


}Z ´ Z 1} “ max


"


sup
θ
|Z1pθq ´ Z


1
1pθq|, sup


θ
|Z2pθq ´ Z


1
2pθq|


*


. (6.6)


Lemma 20. There exists ε0 ą 0, such that when ε ă ε0, under above choice
of distance (6.5) on D0, the operator Γ0 is a contraction.


Proof. We will show that for ε small enough,(the explicit form of smallness
conditions will become clear along the proof), we can find a constant µ0 ă 1
such that for distance defined above in (6.5)


dpΓ0pa, Zq,Γ0pa1, Z 1qq ă µ0dppa, Zq, pa
1, Z 1qq. (6.7)


Note that


dpΓ0pa, Zq,Γ0pa1, Z 1qq “
ˇ


ˇΓ0
1pa, Zq ´ Γ0


1pa
1, Z 1q


ˇ


ˇ


` }pΓ0
2pa, Zq,Γ


0
3pa, Zqq ´ pΓ


0
2pa


1, Z 1q,Γ0
3pa


1, Z 1qq}
(6.8)
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More explicitly, above distance is


ε


ˇ


ˇ


ˇ


ˇ


ż 1


0
Y 1pZpθq, rZpθ; aq, εqdθ ´


ż 1


0
Y 1pZ


1pθq,ĂZ 1pθ; a1q, εqdθ


ˇ


ˇ


ˇ


ˇ


`max


"


sup
θ


∣∣∣∣ 1


Γ0
1pa, Zq


`


ω0θ ` ε


ż θ


0
Y 1pZpσq, rZpσ; aq, εqdσ


˘


´
1


Γ0
1pa


1, Z 1q


`


ω0θ ` ε


ż θ


0
Y 1pZ


1pσq,ĂZ 1pσ; a1q, εqdσ
˘


∣∣∣∣,
ε sup


θ


∣∣∣∣ż 8
0
eλ0tY 2pZpθ ´ atq, rZpθ ´ at; aq, εqdt


´


ż 8


0
eλ0tY 2pZ


1pθ ´ a1tq,ĂZ 1pθ ´ a1t; a1q, εqdt


∣∣∣∣*
(6.9)


Now we consider each term of above expression (6.9). Note that in the
above expression, it suffices to take the supremums for θ P r0, 1s, which
follows from periodicity condition (2.10). By adding and subtracting terms,
we have
ˇ


ˇ


ˇ
Y 1pZpθq, rZpθ; aq, εq ´ Y 1pZ


1pθq,ĂZ 1pθ; a1q, εq
ˇ


ˇ


ˇ


“
ˇ


ˇY 1pZpθq, Zpθ ´ ar ˝KpZpθqqq, εq ´ Y 1pZ
1pθq, Z 1pθ ´ a1r ˝KpZ 1pθqqq, εq


ˇ


ˇ


ď
ˇ


ˇY 1pZpθq, Zpθ ´ ar ˝KpZpθqqq, εq ´ Y 1pZ
1pθq, Zpθ ´ ar ˝KpZpθqqq, εq


ˇ


ˇ


`
ˇ


ˇY 1pZ
1pθq, Zpθ ´ ar ˝KpZpθqqq, εq ´ Y 1pZ


1pθq, Z 1pθ ´ ar ˝KpZpθqqq, εq
ˇ


ˇ


`
ˇ


ˇY 1pZ
1pθq, Z 1pθ ´ ar ˝KpZpθqqq, εq ´ Y 1pZ


1pθq, Z 1pθ ´ a1r ˝KpZpθqqq, εq
ˇ


ˇ


`
ˇ


ˇY 1pZ
1pθq, Z 1pθ ´ a1r ˝KpZpθqqq, εq ´ Y 1pZ


1pθq, Z 1pθ ´ a1r ˝KpZ 1pθqqq, εq
ˇ


ˇ .


By the mean value theorem, and the fact that pa, Zq and pa1, Z 1q are in
D0, we have


ˇ


ˇY 1pZpθq, rZpθ; aq, εq ´ Y 1pZ
1pθq,ĂZ 1pθ; a1q, εq


ˇ


ˇ


ď 2}DY 1}}Z ´ Z
1} ` }DY 1}}DZ


1}}r ˝K}|a´ a1|


` |DY 1}}DZ
1}|a1|}Dpr ˝Kq}}Z ´ Z 1}


ď }DY 1}
`


2`B0|a1|}Dpr ˝Kq}
˘


}Z ´ Z 1}


` }DY 1}B
0}r ˝K}|a´ a1|.


(6.10)


Where all the norms are the usual supremum norms on R or R2 (defined as
above in (6.6)), with


}DY 1} “ maxt}D1Y 1}, }D2Y 1}u, (6.11)


where }DiY 1}, i “ 1, 2 is the supremum of the operator norm corresponding
to the infinity norm defined on R2.
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Then,


ˇ


ˇΓ0
1pa, Zq ´ Γ0


1pa
1, Z 1q


ˇ


ˇ ď ε}DY 1}
`


2`B0|a1|}Dpr ˝Kq}
˘


}Z ´ Z 1}


` εB0}DY 1}}r ˝K}|a´ a
1|


(6.12)


Now consider the first component of the maximum, for θ P r0, 1s, by
adding and subtracting terms, we have:


ˇ


ˇΓ0
2pa, Zq ´ Γ0


2pa
1, Z 1q


ˇ


ˇ


ď
ε


|Γ0
1pa, Zq|


ż 1


0


ˇ


ˇ


ˇ
Y 1pZpθq, rZpθq, εqdθ ´ Y 1pZ


1pθq,ĂZ 1pθq, εq
ˇ


ˇ


ˇ
dθ


`


ε
ş1
0


ˇ


ˇ


ˇ
Y 1pZ


1pθq,ĂZ 1pθ; a1q, εq
ˇ


ˇ


ˇ
dθ


|Γ0
1pa, ZqΓ


0
1pa


1, Z 1q|


ˇ


ˇΓ0
1pa, Zq ´ Γ0


1pa
1, Z 1q


ˇ


ˇ


`
|ω0|


|Γ0
1pa, ZqΓ


0
1pa


1, Z 1q|


ˇ


ˇΓ0
1pa, Zq ´ Γ0


1pa
1, Z 1q


ˇ


ˇ


ď
ε


|Γ0
1pa, Zq|


ż 1


0


ˇ


ˇ


ˇ
Y 1pZpθq, rZpθq, εqdθ ´ Y 1pZ


1pθq,ĂZ 1pθq, εq
ˇ


ˇ


ˇ
dθ


`
|ω0| ` ε}Y 1}


|Γ0
1pa, ZqΓ


0
1pa


1, Z 1q|


ˇ


ˇΓ0
1pa, Zq ´ Γ0


1pa
1, Z 1q


ˇ


ˇ .


(6.13)


By (6.10) and (6.12), with Γ0
1pa, Zq, Γ0


1pa
1, Z 1q P I0, we have,


ˇ


ˇΓ0
2pa, Zq ´ Γ0


2pa
1, Z 1q


ˇ


ˇ


ď
ε|ω0| ` ε


2}Y 1} ` ε|Γ
0
1pa


1, Z 1q|


|Γ0
1pa, ZqΓ


0
1pa


1, Z 1q|


ˆ


}DY 1}B
0}r ˝K}|a´ a1|


` }DY 1}
`


2`B0|a1|}Dpr ˝Kq}
˘


}Z ´ Z 1}


˙


(6.14)


For the third term, similar to what we have done before, we add and
subtract terms, then use the mean value theorem to get the estimate


ˇ


ˇ


ˇ
Y 2pZpθ ´ atq, rZpθ ´ at; aq, εq ´ Y 2pZ


1pθ ´ a1tq,ĂZ 1pθ ´ a1t; a1q, εq
ˇ


ˇ


ˇ


ď 2}DY 2}}Z ´ Z
1} ` 2t}DY 2}}DZ


1}|a´ a1| ` }DY 2}}DZ
1}}r ˝K}|a´ a1|


` }DY 2}}DZ
1}|a1|}Dpr ˝Kq}}Z ´ Z 1}


` t}DY 2}}DZ
1}2|a1|}Dpr ˝Kq}|a´ a1|


ď }DY 2}
`


2`B0|a1|}Dpr ˝Kq}
˘


}Z ´ Z 1}


`B0}DY 2}}r ˝K}|a´ a
1| ` tB0}DY 2}


`


2`B0|a1|}Dpr ˝Kq}
˘


|a´ a1|.
(6.15)







STATE-DEPENDENT DELAY PERTURBATION TO AN ODE 23


Where }DY 2} is defined similarly to (6.11). Then,
ˇ


ˇΓ0
3pa, Zq,´Γ0


3pa
1, Z 1q


ˇ


ˇ


ď ε}DY 2}B
0
` 1


λ2
0


p2`B0|a1|}Dpr ˝Kq}q ´
}r ˝K}


λ0


˘


|a´ a1|


´
ε


λ0
}DY 2}


`


2`B0|a1|}Dpr ˝Kq}
˘


}Z ´ Z 1}.


(6.16)


With above estimates for each terms (6.12), (6.14), and (6.16), we have
that for the distance defined in (6.5), d


`


Γ0pa, Zq,Γ0pa1, Z 1q
˘


is smaller than
the sums of the right hand sides of (6.12), (6.14), and (6.16). More precisely,


d
`


Γ0pω,Zq,Γ0pω2, Z
1q
˘


ď c1|a´ a
1| ` c2}Z ´ Z


1}


Where


c1 “ εB0}r ˝K}


ˆ


}DY 1}
`


1`
|ω0| ` ε}Y 1} ` |Γ


0
1pa


1, Z 1q|


|Γ0
1pa, ZqΓ


0
1pa


1, Z 1q|


˘


´
}DY 2}


λ0


˙


` ε
B0


λ2
0


}DY 2}
`


2`B0|a1|}Dpr ˝Kq}
˘


and


c2 “ ε
`


2`B0|a1|}Dpr ˝Kq}
˘


ˆ


}DY 1}
`


1`
|ω0| ` ε}Y 1} ` |Γ


0
1pa


1, Z 1q|


|Γ0
1pa, ZqΓ


0
1pa


1, Z 1q|


˘


´
}DY 2}


λ0


˙


.


Since a, a1, Γ0
1pa, Zq, and Γ0


1pa
1, Z 1q are all in I0, we have


c1 ď εB0}r ˝K}


ˆ


}DY 1}
`


1`
4|ω0| ` 4ε}Y 1} ` 6|ω0|


|ω0|
2


˘


´
}DY 2}


λ0


˙


` ε
B0


λ2
0


}DY 2}
`


2`B0|a1|}Dpr ˝Kq}
˘


,


and


c2 ď ε
`


2`B0|a1|}Dpr ˝Kq}
˘


ˆ


}DY 1}
`


1`
4|ω0| ` 4ε}Y 1} ` 6|ω0|


|ω0|
2


˘


´
}DY 2}


λ0


˙


Because c1 and c2 are bounded by ε multiplied by some constants, they can
be made small with ε small. Therefore, if ε is sufficiently small, we can find
a µ0 ă 1, such that (6.7) is true, we have Γ0 a contraction . �


Taking any initial guess pω0,W 0,0pθqq P D0. For example, one can take
ω “ ω0, W 0,0pθq “


`


θ
0


˘


. Iterations of this initial guess under Γ0 will have
a limit by Lemma 20. Then by Lemma 19, we can apply Lemma 6, then
we know that the limit is in D0. Therefore, we have a fixed point of Γ0 in


D0, that is, there exist ω ą 0 and W 0 in CL`Lip0 such that (2.13) is solved.
Moreover, by the contraction argument, we know that the solution is unique.


Therefore, ω is unique. W 0 is unique in the CL`Lip0 space under the fixed
phase W 0


1 p0q “ 0.
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To prove the a-posteriori estimation part of Theorem 9, using Γ0 is a
contraction on D0, we know that


d
`


pω0,W 0,0q, pω,W 0q
˘


“ lim
kÑ8


d
`


pω0,W 0,0q, pΓ0qkpω0,W 0,0q
˘


ď


8
ÿ


k“0


pµ0q
kd
`


pω0,W 0,0q,Γ0pω0,W 0,0q
˘


ď
1


1´ µ0
d
`


pω0,W 0,0q,Γ0pω0,W 0,0q
˘


. (6.17)


It remains to estimate d
`


pω0,W 0,0q,Γ0pω0,W 0,0q
˘


by }E0}, where the norm
is the maximum norm defined in (6.6). We have


E0pθq “ ω0 d


dθ
W 0,0pθq ´


ˆ


ω0


λ0W
0,0
2 pθq


˙


´ εY pW 0,0pθq,ĂW 0,0pθ;ω0q, εq,


that is,
ˆ


E0
1pθq


E0
2pθq


˙


“


˜


ω0 d
dθW


0,0
1 pθq ´ ω0 ´ εY 1pW


0,0pθq,ĂW 0,0pθ;ω0q, εq


ω0 d
dθW


0,0
2 pθq ´ λ0W


0,0
2 pθq ´ εY 2pW


0,0pθq,ĂW 0,0pθ;ω0q, εq


¸


,


and,


d
`


pω0,W 0,0q,Γ0pω0,W 0,0q
˘


ď


ˇ


ˇ


ˇ


ˇ


ω0 ` ε


ż 1


0
Y 1pW


0,0pθq,ĂW 0,0pθ;ω0q, εqdθ ´ ω0


ˇ


ˇ


ˇ


ˇ


` sup
θ


ˇ


ˇ


ˇ


ˇ


1


Γ0
1pω


0, W 0q


`


ω0θ ` ε


ż θ


0
Y 1pW


0,0pσq,ĂW 0,0pσ;ω0q, εqdσ
˘


´W 0,0
1 pθq


ˇ


ˇ


ˇ


ˇ


` sup
θ


ˇ


ˇ


ˇ


ˇ


ε


ż 8


0
eλ0tY 2pW


0,0pθ ´ ω0tq,ĂW 0,0pθ ´ ω0t;ω0q, εqdt´W 0,0
2 pθq


ˇ


ˇ


ˇ


ˇ


ď


ˇ


ˇ


ˇ


ˇ


ż 1


0
E0


1pθqdθ


ˇ


ˇ


ˇ


ˇ


`


ˇ


ˇ


ˇ


ˇ


ż 8


0
eλ0tE0


2pθ ´ ω
0tqdt


ˇ


ˇ


ˇ


ˇ


`
1


|Γ0
1pω


0, W 0q|


ˆ ˇ


ˇ


ˇ


ˇ


ż θ


0
E0


1pσqdσ


ˇ


ˇ


ˇ


ˇ


` }W 0,0
1 }


ˇ


ˇ


ˇ


ˇ


ż 1


0
E0


1pθqdθ


ˇ


ˇ


ˇ


ˇ


˙


ď p1`
2B0


|ω0|
q


ˇ


ˇ


ˇ


ˇ


ż 1


0
E0


1pθqdθ


ˇ


ˇ


ˇ


ˇ


`
2


|ω0|


ˇ


ˇ


ˇ


ˇ


ż θ


0
E0


1pσqdσ


ˇ


ˇ


ˇ


ˇ


`


ˇ


ˇ


ˇ


ˇ


ż 8


0
eλ0tE0


2pθ ´ ω
0tqdt


ˇ


ˇ


ˇ


ˇ


For θ P r0, 1s, we have


d
`


pω0,W 0,0q,Γ0pω0,W 0,0q
˘


ď


ˆ


1`
2` 2B0


|ω0|


˙


}E0
1} ´


1


λ0
}E0


2}.


Combine this with the inequality (6.17), we have


d
`


pω0,W 0,0q, pω,W 0q
˘


ď
1


1´ µ0


„ˆ


1`
2` 2B0


|ω0|


˙


}E0
1}C0 ´


1


λ0
}E0


2}C0





.


(6.18)
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By definition of the norm, (4.2) and l “ 0 case of (4.1) are true for a constant
C, which depends on ε, B0, ω0, λ0.


For other values of l, one can use interpolation inequality in Lemma 8, to
get


}W 0,0
1 ´W 0


1 }Cl ď cpl, Lq}W 0,0
1 ´W 0


1 }
1´ l


L


C0 }W 0,0
1 ´W 0


1 }
l
L


CL


ď cpl, Lq}W 0,0
1 ´W 0


1 }
1´ l


L


C0 p2B0q
l
L .


(6.19)


Similar estimates can be done for the second component, this finishes the
proof of the estimations in theorem 9.


For solution of the equation (2.13), note that K ˝W 0pθ ` ωtq solves the
equation (2.2):


d


dt
K˝W 0pθ`ωtq “ XpK˝W 0pθ`ωtq,K˝W 0pθ`ωpt´rpK˝W 0pθ`ωtqqqqq.


If W 0 is L times differentiable, then right hand side of above equation is
L times differentiable, so is the left hand side. Using the fact that K is
an analytic local diffeomorphism, one can conclude that W 0 is (L+1) times
differentiable. A bootstrap argument can be used to see W 0 is differentiable
up to any order.


6.2. Proof of Theorem 10. With Theorem 9, ω and W 0 are known to us.
To prove Theorem 10, we have to consider the equations for the first order
term, j-th order term, and then higher order term in s. We will obtain λ,
W 1 solving the first order equation (2.14), W j solving (2.15), and then find
Wą which solves equation (2.16).


6.2.1. First-order Equation. Recall that for the first order term, we got an
invariance equation (2.14), see also below:


ω
d


dθ
W 1pθq ` λW 1pθq ´


ˆ


0
λ0W


1
2 pθq


˙


“ εY
1
pθ, λ,W 0,W 1, εq,


where


Y
1
pθ, λ,W 0,W 1, εq “ ApθqW 1pθq`Bpθ;λqW 1pθ´ωr ˝KpW 0pθqqq, (6.20)


Apθq “ ´ωD2Y pW
0pθq,ĂW 0pθq, εqDW 0pθ ´ ωr ˝KpW 0pθqqqDpr ˝KqpW 0pθqq


`D1Y pW
0pθq,ĂW 0pθq, εq (6.21)


and
Bpθ;λq “ e´λr˝KpW


0pθqqD2Y pW
0pθq,ĂW 0pθq, εq.


Note that in the expression of A and B above, we suppressed the ω in the


expression of ĂW 0. We do this to simplify the notation, since ω is already
known from Theorem 9.


Remark 21. Since Y
1
pθ, λ,W 0,W 1, εq, as in (6.20), is linear in W 1, equa-


tion (2.14) for W 1, is linear and homogenous in W 1. Hence if W 1pθq solves
(2.14), so does any scalar multiple of W 1pθq.
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Componentwise, we have the following two equations:


ω
d


dθ
W 1


1 pθq ` λW
1
1 pθq “ εY


1
1pθ, λ,W


0,W 1, εq, (6.22)


ω
d


dθ
W 1


2 pθq ` pλ´ λ0qW
1
2 pθq “ εY


1
2pθ, λ,W


0,W 1, εq. (6.23)


As already pointed out, for the unperturbed case, W could be chosen as
the identity map. So after we add a small perturbation, W 1pθq « p 0


1 q. We
will be able to find a unique W 1 close to p 0


1 q solving above equation (2.14),
by considering the following normalization:


ż 1


0
W 1


2 pθqdθ “ 1. (6.24)


Remark 22. It is natural to choose above normalization (6.24), since under
small perturbation, we have W 1pθq « p 0


1 q. Meanwhile, we believe that λ does


not depend on the choice of normalization as long as
ş1
0 W


1
2 pθqdθ ‰ 0.


From now on, since W 0 is already known to us, we will omit W 0 from


Y
1
pθ, λ,W 0,W 1, εq, and denote it as Y


1
pθ, λ,W 1, εq. We define an operator


Γ1 as follows:


Γ1


¨


˝


b
F1


F2


˛


‚pθq “


¨


˝


Γ1
1pb, F q


Γ1
2pb, F qpθq


Γ1
3pb, F qpθq


˛


‚


“


¨


˚


˝


λ0 ` ε
ş1
0 Y


1
2pθ, b, F, εqdθ


´ε
ş8


0 ebtY
1
1pθ ` ωt, b, F, εqdt


Cpb, F q ` ε
ω


şθ
0 Y


1
2pσ, b, F,εq ´ p


ş1
0 Y


1
2pθ, b, F, εqdθqF2pσqdσ


˛


‹


‚


,


(6.25)


where


Cpb, F q “ 1´
ε


ω


ż 1


0


ż θ


0
Y


1
2pσ, b, F, εqdσdθ


`
ε


ω
p


ż 1


0
Y


1
2pθ, b, F, εqdθq


ż 1


0


ż θ


0
F2pσqdσdθ


(6.26)


is a constant chosen to ensure that Γ1
3pb, F q also satisfies the normalization


condition (6.24), i.e.
ş1
0 Γ1


3pb, F qpθqdθ “ 1.


Similar to previous section, section 6.1, for the domain of Γ1, we consider


a closed interval I1 “ tb : |b´ λ0| ď
|λ0|


3 u, as well as the function space


CL´1`Lip
1 “ tf | f :TÑ Tˆ R, f can be lifted to a function from R to R2,


still denoted as f,which satisfies fpθ ` 1q “ fpθq,


}f}L´1`Lip ď B1, and


ż 1


0
f2pθqdθ “ 1u,
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where


}f}L´1`Lip “ max
i“1,2,k“0,...,L´1


t sup
θPr0,1s


}f
pkq
i pθq}, Lippf


pL´1q
i qu.


Where L is as in Theorem 9, and B1 is a positive constant.


Define D1 “ I1 ˆ CL´1`Lip
1 , then Γ1 is defined on D1. We have the


following:


Lemma 23. If ε is small enough, Γ1pD1q Ă D1.


Proof. Since Y
1
2pθ, b, F, εq is bounded, for small ε, we have Γ1


1pb, F q P I
1.


Now consider Γ1
2pb, F qpθq, we first have to show that


Γ1
2pb, F qpθ ` 1q “ Γ1


2pb, F qpθq.


This follows from the fact that Y
1
1pθ ` 1, b, F, εq “ Y


1
1pθ, b, F, εq, which is


true by periodicity of W 0 as in equation (2.10), of F , and of r ˝K with
respect to its first component.


Now we check dn


dθn Γ1
2pb, F qpθq, 0 ď n ď L´ 1, is bounded. Notice that


dn


dθn
Γ1


2pb, F qpθq “ ´ε


ż 8


0
ebt
Bn


Bθn
Y


1
1pθ ` ωt, b, F, εqdt.


By dominated convergence theorem, it suffices to check that Bn


BθnY
1
1pθ `


ωt, b, F, εq is bounded. If one uses Faà di Bruno’s formula, as in Lemma 7,


boundedness of Bn


BθnY
1
1pθ`ωt, b, F, εq is ensured by assumptions on Y , r ˝K,


andW 0pθq, as well as F P CL´1`Lip
1 . Then for ε small enough, the derivatives


could be bounded by B1. Bound for Lipschitz constant of dL´1


dθL´1 Γ1
2pb, F qpθq


also follows.
For Γ1


3pb, F qpθq, we will first show that it is periodic. Notice that


d


dθ
Γ1


3pb, F qpθq “
ε


ω
Y


1
2pθ, b, F, εq ´


ε


ω


ˆ
ż 1


0
Y


1
2pθ, b, F, εqdθ


˙


F2pθq (6.27)


is periodic. Hence, to show periodicity of Γ1
3pb, F qpθq, it suffices to see


that Γ1
3pb, F qp0q “ Γ1


3pb, F qp1q, which is true because
ş1
0 F2pθqdθ “ 1. The


choice of the constant Cpb, F q ensures that the normalization condition
ş1
0 Γ1


3pb, F qpθqdθ “ 1 is also verified.
Take derivatives of (6.27), we have for 2 ď n ď L´ 1


dn


dθn
Γ1


3pb, F qpθq “
ε


ω


ˆ


dpn´1q


dθpn´1q
Y


1
2pθ, b, F, εq´


ˆ
ż 1


0
Y


1
2pθ, b, F, εqdθ


˙


dpn´1q


dθpn´1q
F2pθq


˙


,


which will be ε
ω multiplied by bounded functions due to the assumptions on


Y , r ˝K, and W 0pθq, as well as F P CL´1`Lip
1 . When ε is small, they could


all be bounded by B1. Similar for Lipschitz constant of dL´1


dθL´1 Γ1
3pb, F qpθq.
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Hence for ε small enough, where the smallness condition depends on
bounds of the derivatives of Y , r ˝K, B0, and B1, but not on the spe-


cific choice of pb, F q P D1, we have that pΓ1
2pb, F q,Γ


1
3pb, F qq P CL´1`Lip


1 .
This finishes the proof. �


Recall the distance introduced in (6.5):


dppa, Zq, pa1, Z 1qq “ |a´ a1| ` }Z ´ Z 1},


where


}Z ´ Z 1} “ max


"


sup
θ
|Z1pθq ´ Z


1
1pθq|, sup


θ
|Z2pθq ´ Z


1
2pθq|


*


.


Lemma 24. Under above defined distance on D1, for small enough ε, Γ1 is
a contraction.


Proof. We will show that for ε small enough, we can find a constant 0 ă
µ1 ă 1 such that


dpΓ1pb, F q,Γ1pb1, F 1qq ă µ1dppb, F q, pb
1, F 1qq. (6.28)


Note that


dpΓ1pb, F q,Γ1pb1, F 1qq


ď ε


ˇ


ˇ


ˇ


ˇ


ż 1


0
Y


1
2pθ, b, F, εq ´ Y


1
2pθ, b


1, F 1, εqdθ


ˇ


ˇ


ˇ


ˇ


` ε sup
θ


ˇ


ˇ


ˇ


ˇ


ż 8


0
ebtY


1
1pθ ` ωt, b, F, εq ´ e


b1tY
1
1pθ ` ωt, b


1, F 1, εqdt


ˇ


ˇ


ˇ


ˇ


`
ε


|ω|
sup
θ


ˇ


ˇ


ˇ


ˇ


ż θ


0
Y


1
2pσ, b, F, εq ´


`


ż 1


0
Y


1
2pθ, b, F, εqdθ


˘


F2pσqdσ


´


ż θ


0
Y


1
2pσ, b


1, F 1, εq `
`


ż 1


0
Y


1
2pθ, b


1, F 1, εqdθ
˘


F 12pσqdσ


ˇ


ˇ


ˇ


ˇ


` |CpF, bq ´ CpF 1, b1q|
(6.29)


As before, we will consider each term of the right hand side of the above
inequality (6.29).


Recall that Y
1


has the form, (6.20)


Y
1
pθ, λ,W 1, εq “ ApθqW 1pθq `Bpθ;λqW 1pθ ´ ωr ˝KpW 0pθqqq.


If we use notation:


Apθq “


ˆ


A11pθq A12pθq
A21pθq A22pθq


˙


, Bpθ;λq “


ˆ


B11pθ;λq B12pθ;λq
B21pθ;λq B22pθ;λq


˙


,


then


Y
1
1pθ, λ,W


1, εq “A11pθqW
1
1 pθq `A12pθqW


1
2 pθq


`B11pθ;λqW
1
1 pθ ´ ωr ˝KpW


0pθqqq


`B12pθ;λqW
1
2 pθ ´ ωr ˝KpW


0pθqqq,
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and


Y
1
2pθ, λ,W


1, εq “A21pθqW
1
1 pθq `A22pθqW


1
2 pθq


`B21pθ;λqW
1
1 pθ ´ ωr ˝KpW


0pθqqq


`B22pθ;λqW
1
2 pθ ´ ωr ˝KpW


0pθqqq.


We estimate


|Bpθ; bq| ď e´
4
3
λ0}r˝K}}D2Y },


and


|Bpθ; bq ´Bpθ; b1q| ď }D2Y }e
´ 4


3
λ0}r˝K}}r ˝K}|b´ b1|.


Also, if we define }A} “ maxθ }Apθq}, where }Apθq} is the operator norm
corresponding to the maximum norm }¨} defined as in equation (6.6). Then,


|Y
1
1pθ, b, F, εq ´ Y


1
1pθ, b


1, F 1, εq|


ď }A}}F ´ F 1} ` }Bpθ; bq}}F ´ F 1} ` }Bpθ; bq ´Bpθ; b1q}}F 1}


ď p}A} ` e´
4
3
λ0}r˝K}}D2Y }q}F ´ F


1} `B1}D2Y }e
´ 4


3
λ0}r˝K}}r ˝K}|b´ b1|,


and similarly,


|Y
1
2pθ, b, F, εq ´ Y


1
2pθ, b


1, F 1, εq|


ď p}A} ` e´
4
3
λ0}r˝K}}D2Y }q}F ´ F


1} `B1}D2Y }e
´ 4


3
λ0}r˝K}}r ˝K}|b´ b1|.


Note also that


|Y
1
1pθ, b, F, εq| ď B1p}A} ` e´


4
3
λ0}r˝K}}D2Y }q,


similarly,


|Y
1
2pθ, b, F, εq| ď B1p}A} ` e´


4
3
λ0}r˝K}}D2Y }q.


Now for the first term in (6.29), we have


ˇ


ˇΓ1
1pb, F q ´ Γ1


1pb
1, F 1q


ˇ


ˇ ď εp}A} ` e´
4
3
λ0}r˝K}}D2Y }q}F ´ F


1}


` εB1}D2Y }e
´ 4


3
λ0}r˝K}}r ˝K}|b´ b1|.


For the second term in (6.29), we have for all θ,
ˇ


ˇΓ1
2pb, F q ´ Γ1


2pb
1, F 1q


ˇ


ˇ ď


´
3ε


2λ0
p}A} ` e´


4
3
λ0}r˝K}}D2Y }q}F ´ F


1}


´
3B1ε


2λ0


ˆ


e´
4
3
λ0}r˝K}}D2Y }


`


}r ˝K} ´
3


2λ0


˘


´
3


2λ0
}A}


˙


|b´ b1|







30 J. YANG, J. GIMENO, AND R. DE LA LLAVE


For the third term in (6.29), we have


ˇ


ˇΓ1
3pb, F q ´ Γ1


3pb
1, F 1q


ˇ


ˇ ď
ε


|ω|
p1` 2B1qp}A} ` e´


4
3
λ0}r˝K}}D2Y }q}F ´ F


1}


`
B1ε


|ω|
p1`B1q}D2Y }e


´ 4
3
λ0}r˝K}}r ˝K}|b´ b1|


Similar holds for the last part in (6.29),


|CpF, bq ´ CpF 1, b1q| ď
ε


|ω|
p1` 2B1qp}A} ` e´


4
3
λ0}r˝K}}D2Y }q}F ´ F


1}


`
B1ε


|ω|
p1`B1q}D2Y }e


´ 4
3
λ0}r˝K}}r ˝K}|b´ b1|


Combine all the estimations above, we can find constants c1, c2 such that,


dpΓ1pb, F q,Γ1pb1, F 1qq ď εpc1|b´ b
1| ` c2}F ´ F


1}q.


Therefore, for small enough ε, we will have a contraction, so that we can
find a µ1 such that equation (6.28) is true. �


Taking any initial guess pλ0,W 1,0q P D1, we could take λ0 “ λ0 and
W 1,0pθq “ p 0


1 q, the sequence pΓ1qnpλ0,W 1,0q has a limit in D1, we denote it
by pλ,W 1q. pλ,W 1q is a fixed point of operator Γ1, hence it solves equation
(2.14). Since the operator is a contraction, λ is unique, W 1 is unique in C0


sense under the normalization condition (6.24).
Similar to what we have done in estimation (6.17) in section 6.1, notice


that


d
`


pλ0,W 1,0q, pλ,W 1q
˘


ď
1


1´ µ1
d
`


pλ0,W 1,0q,Γ1pλ0,W 1,0q
˘


. (6.30)


We will estimate d
`


pλ0,W 1,0q,Γ1pλ0,W 1,0q
˘


by }E1}. If we write E1pθq
in matrix form, we have


ˆ


E1
1pθq


E1
2pθq


˙


“


˜


ω d
dθW


1,0
1 pθq ` λ0W 1,0


1 pθq ´ εY
1
1pθ, λ


0,W 1,0, εq


ω d
dθW


1,0
2 pθq ` pλ0 ´ λ0qW


1,0
2 pθq ´ εY


1
2pθ, λ


0,W 1,0, εq


¸


.
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Therefore,


d
`


pλ0,W 1,0q,Γ1pλ0,W 1,0q
˘


ď|λ0 ` ε


ż 1


0
Y


1
2pθ, λ


0,W 1,0, εqdθ ´ λ0|


` sup
θ


ˇ


ˇ


ˇ


ˇ


W 1,0
1 pθq ` ε


ż 8


0
eλ


0tY
1
1pθ ` ωt, λ


0,W 1,0, εqdt


ˇ


ˇ


ˇ


ˇ


` sup
θ


ˇ


ˇ


ˇ


ˇ


Cpλ0,W 1,0q `
ε


ω


ż θ


0
Y


1
2pσ, λ


0,W 1,0,εq


´


ˆ
ż 1


0
Y


1
2pθ, λ


0,W 1,0, εqdθ


˙


W 1,0
2 pσqdσ ´W 1,0


2 pθq


ˇ


ˇ


ˇ


ˇ


ď


ˇ


ˇ


ˇ


ˇ


ż 1


0
E1


2pθqdθ


ˇ


ˇ


ˇ


ˇ


`


ˇ


ˇ


ˇ


ˇ


ż 8


0
eλ


0tE1
1pθ ` ωtqdt


ˇ


ˇ


ˇ


ˇ


`
2` 2B1


|ω|
}E1


2}


ď
1


|λ0|
}E1


1} `


ˆ


1`
2` 2B1


|ω|


˙


}E1
2}


ď
3


2|λ0|
}E1


1} `


ˆ


1`
2` 2B1


|ω|


˙


}E1
2}.


Then


d
`


pλ0,W 1,0q, pλ,W 1q
˘


ď
1


1´ µ1


„


3


2|λ0|
}E1


1} `


ˆ


1`
2` 2B1


|ω|


˙


}E1
2}





.


(6.31)
Therefore, we can find a constant C, depending on ε, B1, ω and λ0 such


that |λ´ λ0| ď C}E1}. This proves (4.5).


6.2.2. Equation for jth order terms. For each j ě 2, we can proceed in a
similar manner to find W j . With ω, λ, W 0, and W 1 known, Equations for
W j ’s are easier to analyze.


Remark 25. As we will see, for theoretical result, we can stop at order 1
and start to deal with the higher order term. We include here the discussion
for W j’s for numerical interests.


Assume now that we have already obtained W 0, . . . ,W j´1, and ω, λ, we
are going to find W jpθq. To obtain the invariance equation satisfied by
W j , which was in equation (2.15). We consider the j-th order terms in the


equation (2.7). Note that the coefficient for sj in ĂW pθ, sq, is


´ωDW 0pθ ´ ωr ˝KpW 0pθqqDpr ˝KqpW 0pθqqW jpθq


Therefore, Y
j


is of the form:


Y
j
pθ,W 0,W j , εq “ ApθqW jpθq, (6.32)
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where Apθq is the same as in (6.21),


Apθq “ ´ωD2Y pW
0pθq,ĂW pθq, εqDW 0pθ ´ ωr ˝KpW 0pθqqDpr ˝KqpW 0pθqq


`D1Y pW
0pθq,ĂW pθq, εq.


We also note that Rjpθq will be some expression in the derivatives of Y


evaluated at pW 0pθq,ĂW pθq, εq, multiplied with W 0, . . . ,W j´1. Therefore,
Rjpθq will have the same regularity as W j´1. We will see inductively by the
following argument that W j is pL ´ 1q times differentiable with pL ´ 1q-th
derivative Lipschitz.


From now on, we will write Y
j


as Y
j
pθ,W j , εq, for that λ and W 0 are


known to us. Componentwisely, W j should satisfy


ω
d


dθ
W j


1 pθq ` λjW
j
1 pθq “ εY


j
1pθ,W


j , εq `Rj1pθq, (6.33)


ω
d


dθ
W j


2 pθq ` pλj ´ λ0qW
j
2 pθq “ εY


j
2pθ,W


j , εq `Rj2pθq. (6.34)


For functions in the space


CL´1`Lip
j “ tf | f :TÑ Tˆ R, f can be lifted to a function from R to R2,


still denoted as f,which satisfies fpθ ` 1q “ fpθq,


}f}L´1`Lip ď Bju,


where


}f}L´1`Lip “ max
i“1,2,k“0,...,L´1


t sup
θPr0,1s


}f
pkq
i pθq}, Lippf


pL´1q
i qu.


Similar to what we have done above, define an operator on space CL´1`Lip
j


ΓjpGqpθq “


¨


˝


´ε
ş8


0 eλjt
´


Y
j
1pθ ` ωt,G, εq `R


j
1pθ ` ωtq


¯


dt


´ε
ş8


0 epλj´λ0qt
´


Y
j
2pθ ` ωt,G, εq `R


j
2pθ ` ωtq


¯


dt


˛


‚ (6.35)


Assume that we have already obtainedW k in CL´1`Lip
k for k “ 0, . . . , j´1,


we have the following:


Lemma 26. For small enough ε, we have ΓjpCL´1`Lip
j q Ă CL´1`Lip


j .


This follows from λ ă 0 and pλj ´ λ0q ă 0 for j ě 2 and the regularity


of W 0, . . . ,W j , Y
j
, and Rj . Moreover, we have ε in front of the expression.


Since this is very similar to the analysis of W 0 and W 1, we will omit the
detailed proof here.


We also know that Γj is a C0 contraction for small ε.


Lemma 27. For small enough ε, Γj is a contraction in C0 distance.


This follows easily from that λ ă 0 and pλj ´ λ0q ă 0 for j ě 2, and Y
j


is linear in W j .
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If we define norm as before


}G} “ maxtsup
θ
|G1pθq|, sup


θ
|G2pθq|u,


above lemma tells us that, if ε is small enough, then one can find 0 ă µj ă 1,
such that


}ΓpGq ´ ΓpG1q} ď µj}G´G
1}.


Taking any initial guess W j,0 P CL´1`Lip
j , we would take W j,0pθq “ p 0


0 q,


the sequence pΓjqnpW j,0q has a limit in CL´1`Lip
j , we denote it by W j . W j


is a fixed point of operator Γj , so it solves equation (2.15). W j close to the
initial guess, is unique in the sense of C0 by the contraction argument. We
will see quantitative estimates below.


We know that


}W j ´W j,0} ď
1


1´ µj
}W j,0 ´ ΓjpW j,0q}. (6.36)


With similar argument as in the error estimation of W 0 and W 1, we have


|W j,0
1 pθq ´ Γj1pW


j,0qpθq| ď ´
1


jλ
}Ej1},


|W j,0
2 pθq ´ Γj2pW


j,0qpθq| ď ´
1


jλ´ λ0
}Ej2}.


Therefore, we have


}W j ´W j,0} ď
1


1´ µj


ˆ


´
1


jλ
}Ej1} ´


1


jλ´ λ0
}Ej2}


˙


ď C}Ej}. (6.37)


We stress that above C depends on j, ε, Bj and the SDDE, however, it does


not depend on choice of W j,0 in space CL´1`Lip
j .


6.2.3. Equation of Higher Order Term. Now we have already found ω, λ,
W 0, . . . ,WN´1. It remains to consider the higher order term. We will solve
equation (2.16) locally in this section, which will establish the existence in
Theorem 10. From now on, we will write:


W pθ, sq “Wďpθ, sq `Wąpθ, sq, (6.38)


where Wďpθ, sq “
řN´1
j“0 W jpθqsj . To make the analysis feasible, we do a


cut-off to the equation satisfied by Wą in (2.16):


pωBθ ` sλBsqW
ąpθ, sq “


ˆ


0
λ0W


ą
2 pθ, sq


˙


` εY ąpWą, θ, s, εqφpsq, (6.39)


where


Y ąpWą, θ, s, εq “ Y pW pθ, sq,ĂW pθ, sq, εq ´
N´1
ÿ


i“0


Y
i
pθqsi, (6.40)


Y
i
pθq “


1


i!


Bi


Bsi
pY pW pθ, sq,ĂW pθ, sq, εqq|s“0,
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and recall the C8 cut-off function φ : RÑ r0, 1s as introduced in (2.8):


φpxq “


#


1 if |x| ď 1
2 ,


0 if |x| ą 1.


Remark 28. Cut-off is needed in our method. We note that similar to
before, the boundaries for cut-off function above(1


2 and 1) could be changed
to any positive numbers a1 ă a2.


Adding a cut-off is not too restrictive. Indeed, we only get local results for
the original problem near the limit cycle. Since we have used extensions to
get the prepared equation (2.7), what happens for s with large absolute value
will not matter.


Now let cptq “ pθ` ωt, seλtq be the characteristics, we define an operator
as follows:


ΓąpHqpθ, sq “ ´ε


ż 8


0


ˆ


1 0
0 e´λ0t


˙


Y ąpH, cptq, εqφpseλtqdt. (6.41)


If there is a fixed point of Γą which has some regularity, it will solve the
modified invariance equation (6.39). For the domain of Γą, assume Lą is a
positive integer, we consider Dą the space of functions H : TˆRÑ TˆR,
where BlθB


m
s Hipθ, sq, i “ 1, 2, exists if l ` m ď Lą, with } ¨ }Lą,N norm


bounded by a constant B:


}H}Lą,N :“ max
l`mďLą,i“1,2


#


suppθ,sqPTˆR |B
l
θB
m
s Hipθ, sq||s|


´pN´mq if m ď N,


suppθ,sqPTˆR |B
l
θB
m
s Hipθ, sq| if m ą N.


(6.42)
Under above notations in (6.38), we have


ĂW pθ, sq “W pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq


“Wďpθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq


`Wąpθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq.


We define


ĂWąpθ, sq “Wąpθ ´ ωr ˝KppWď `Wąqpθ, sqq, se´λr˝KppW
ď`Wąqpθ,sqqq.


(6.43)


Lemma 29. If ε is small enough, ΓąpDąq Ă Dą.


Proof. For H P Dą, we need to prove that for i “ 1, 2, and l ` m ď Lą,
BlθB


m
s Γąi pHqpθ, sq exists, also that }ΓąpHq}Lą,N is bounded by B. Using


definition in equation (6.43)


rHpθ, sq “ Hpθ ´ ωr ˝KppWď `Hqpθ, sqq, se´λr˝KppW
ď`Hqpθ,sqqq


We first claim that for }H}Lą,N ď B, we can find C, which does not
depend on the choice of H, such that for l ` m ď Lą, i “ 1, 2, pθ, sq P
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rTˆ r´1, 1s:
#


|BlθB
m
s
rHipθ, sq| ď C|s|pN´mq if m ď N,


|BlθB
m
s
rHipθ, sq| ď C if m ą N.


(6.44)


Note that within the proof of this lemma, C may vary from line to line.
Finally, we will take C to be the maximum of all Cs appear in this proof.


To prove above claim, notice that }H}Lą,N ď B implies that
#


|BlθB
m
s Hipθ, sq| ď B|s|pN´mq if m ď N,


|BlθB
m
s Hipθ, sq| ď B if m ą N.


for l `m ď Lą, i “ 1, 2, and pθ, sq P Tˆ R. Then


| rHipθ, sq| ď B|s|Ne´λNr˝KppW
ď`Hqpθ,sqq.


By boundedness of r ˝K, we have that | rHipθ, sq| ď C|s|N . Note that


B


Bθ
rHipθ, sq “ BθHi


´


θ ´ ωr ˝KppWď `Hqpθ, sqq, se´λr˝KppW
ď`Hqpθ,sqq


¯


¨


¨
`


1´ ωDpr ˝KqppWď `Hqpθ, sqqBθpW
ď `Hqpθ, sq


˘


`BsHi


´


θ ´ ωr ˝KppWď `Hqpθ, sqq, se´λr˝KppW
ď`Hqpθ,sqq


¯


¨


¨sp´λqDpr ˝KqppWď `Hqpθ, sqqBθpW
ď `Hqpθ, sqe´λr˝KppW


ď`Hqpθ,sqq


Then, we have
ˇ


ˇ


ˇ


ˇ


B


Bθ
rHipθ, sq


ˇ


ˇ


ˇ


ˇ


ďB|s|Ne´λN}r˝K}p1` |ω|}Dpr ˝Kq}}BθpW
ď `Hq}


`B|s|N´1e´λpN´1q}r˝K}|s||λ|}Dpr ˝Kq}e´λ}r˝K}}BθpW
ď `Hq}.


By boundedness of Wď, H, r ˝K, and their derivatives, we have
ˇ


ˇ


ˇ


ˇ


B


Bθ
rHipθ, sq


ˇ


ˇ


ˇ


ˇ


ď C|s|N .


Above C depends on B, but it will not depend on the choice of H P Dą.
Similarly,


B


Bs
rHipθ, sq “ BθHipθ ´ ωr ˝KppW


ď `Hqpθ, sqq, se´λr˝KppW
ď`Hqpθ,sqqq¨


¨p´ωqDpr ˝KqppWď `Hqpθ, sqqBspW
ď `Hqpθ, sq


`BsHipθ ´ ωr ˝KppW
ď `Hqpθ, sqq, se´λr˝KppW


ď`Hqpθ,sqqq¨


¨
`


1` sp´λqDpr ˝KqppWď `Hqpθ, sqqBspW
ď `Hqpθ, sq


˘


e´λr˝KppW
ď`Hqpθ,sqq.


Then,
ˇ


ˇ


ˇ


ˇ


B


Bs
rHipθ, sq


ˇ


ˇ


ˇ


ˇ


ďB|s|N´1e´λpN´1q}r˝K}
´


1` |s||λ|}Dpr ˝Kq}e´λ}r˝K}}BspW
ď `Hq}


¯


`B|s|Ne´λN}r˝K}|ω|}Dpr ˝Kq}}BspW
ď `Hq}.
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Since we have |s| ď 1, regularity of Wď and H we have
ˇ


ˇ


ˇ


ˇ


B


Bs
rHipθ, sq


ˇ


ˇ


ˇ


ˇ


ď C|s|N´1.


The C will not depend on the choice of H as long as }H}Lą,N ď B. The
proof of the claim is then finished by induction.


Now we observe that we can bound the integrand in the operator Γą.
Claim: There exists constant C, such that }Y pH, θ, s, εqφpsq}Lą,N ď C


when }H}Lą,N ď B.
Note that by definition of the cut-off function φ, it suffices to consider s P
r´1, 1s.


Y ąpH, θ, s, εq “ Y ppWď `Hqpθ, sq, ČpWď `Hqpθ, sq, εq ´
N´1
ÿ


i“0


Y
i
pθqsi,


where


Y
i
pθq “


1


i!


Bi


Bsi
pY ppWď `Hqpθ, sq, ČpWď `Hqpθ, sq, εqq|s“0.


One can add and subtract terms in above expression,


Y ąpH, θ, s, εq “Y ppWď `Hqpθ, sq, ČpWď `Hqpθ, sq, εq


´ Y pWďpθ, sq, ĄWďpθ, s,Hq, εq


` Y pWďpθ, sq, ĄWďpθ, s,Hq, εq


´ Y pWďpθ, sq,Wďpθ ´ ωr ˝KpWďpθ, sqq, se´λr˝KpW
ďpθ,sqqq, εq


` Y pWďpθ, sq,Wďpθ ´ ωr ˝KpWďpθ, sqq, se´λr˝KpW
ďpθ,sqqq, εq


´


N´1
ÿ


i“0


Y
i
pθqsi,


(6.45)


where we used the notation


ĄWďpθ, s;Hq “Wďpθ ´ ωr ˝KppWď `Hqpθ, sqq, se´λr˝KppW
ď`Hqpθ,sqqq.


We group the first two lines, the two lines in the middle, and the last two
lines in (6.45), and denote them as `1, `2, and `3, respectively. Then for `1:


`1 “


ż 1


0
D1Y pp1´ tqW


ďpθ, sq ` tpWď `Hqpθ, sq, ČpWď `Hqpθ, sq, εqHpθ, sqdt


`


ż 1


0
D2Y pW


ďpθ, sq, p1´ tqĄWďpθ, s;Hq ` t ČpWď `Hqpθ, sq, εq rHpθ, sqdt


By the regularity of Y , and Wď and }H}Lą,N ď B, using that rH satisfy
(6.44), we know that }`1φpsq}Lą,N ď C.
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Similarly `2 is
ż 1


0
D2Y pW


ďpθ, sq,Wďpθ ´ ωr ˝KppWď ` tHqpθ, sqq, se´λr˝KppW
ď`tHqpθ,sqqq, εq¨


rBθW
ďp¨qp´ωqDpr ˝Kqp¨q ` BsW


ďp¨qse´λr˝Kp¨qDpr ˝Kqp¨qp´λqsHpθ, sqdt,


Similar to `1 case, we have that }`2φpsq}Lą,N ď C.


For the third line, notice that
řN´1
i“0 Y


i
pθqsi is the Taylor expansion at


s “ 0 for


Y pWďpθ, sq,Wďpθ ´ ωr ˝KpWďpθ, sqq, se´λr˝KpW
ďpθ,sqqq, εq, (6.46)


According to Taylor’s Formula with remainder, see [LdlL10], we just need
to show that for m ď N


BN´m


BsN´m
Bl


Bθl
Bm


Bsm
(6.46),


and for m ą N ,
Bm


Bsm
Bl


Bθl
p`3q,


are bounded for all θ, |s| ď 1, and l`m ď Lą. This is true if we assume that
the lower order term has more regularity, more precisely, L´ 1 ě Lą `N .
We will take Lą “ L ´ 1 ´ N to optimize regularity. Therefore, we have
}`3φpsq}Lą,N ď C, and the claim is proved.


Hence, according to (6.41), if m ď N , for small ε, we have that


|BlθB
m
s Γąi pHqpθ, sq| ď ε


ˇ


ˇ


ˇ


ˇ


ż 8


0
e´λ0tC|s|N´meλpN´mqteλmtdt


ˇ


ˇ


ˇ


ˇ


ď B|s|N´m,


(6.47)
if m ą N , for small ε, we have that


|BlθB
m
s Γąi pHqpθ, sq| ď ε


ˇ


ˇ


ˇ


ˇ


ż 8


0
e´λ0tCeλmtdt


ˇ


ˇ


ˇ


ˇ


ď B, (6.48)


Therefore, for small ε, }Γąi pHq}Lą,N ď B when }H}Lą,N ď B. �


Lemma 30. If ε small enough, we have Γą is a contraction in } ¨ }0,N .


Proof. Recall that }H}0,N “ suppθ,sqPTˆR |Hpθ, sq||s|
´N . We consider


ΓąpHqpθ, sq ´ ΓąpH 1qpθ, sq


“ ´ε


ż 8


0


ˆ


1 0
0 e´λ0t


˙


`


Y ąpH, cptq, εq ´ Y ąpH 1, cptq, εq
˘


φpseλtqdt


(6.49)


Given the low order terms, denote W “ Wď `H and W 1 “ Wď `H 1, we
have


Y ąpH, cptq, εq ´ Y ąpH 1, cptq, εq


“ Y pW pcptqq,ĂW pcptqq, εq ´ Y pW 1pcptqq, ĂW 1pcptqq, εq. (6.50)
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Note that for all θ, s,


|W pθ, sq ´W 1pθ, sq| “ |Hpθ, sq ´H 1pθ, sq| ď }H ´H 1}Lą,N |s|
N . (6.51)


Then for ĂW pθ, sq ´ ĂW 1pθ, sq, by adding and subtracting terms, we have
for all θ, s,


|ĂW pθ, sq ´ ĂW 1pθ, sq| “


ˇ


ˇ


ˇ


ˇ


W pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq


´W 1pθ ´ ωr ˝KpW 1pθ, sqq, se´λr˝KpW
1pθ,sqqq


ˇ


ˇ


ˇ


ˇ


ď


ˇ


ˇ


ˇ


ˇ


W pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq


´W 1pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq


ˇ


ˇ


ˇ


ˇ


`


ˇ


ˇ


ˇ


ˇ


W 1pθ ´ ωr ˝KpW pθ, sqq, se´λr˝KpW pθ,sqqq


´W 1pθ ´ ωr ˝KpW 1pθ, sqq, se´λr˝KpW pθ,sqqq


ˇ


ˇ


ˇ


ˇ


`


ˇ


ˇ


ˇ


ˇ


W 1pθ ´ ωr ˝KpW 1pθ, sqq, se´λr˝KpW pθ,sqqq


´W 1pθ ´ ωr ˝KpW 1pθ, sqq, se´λr˝KpW
1pθ,sqqq


ˇ


ˇ


ˇ


ˇ


ďM1}H ´H
1}0,N |s|


N ,


where


M1 “ e´λN}r˝K} ` p}DWď} `Bq}Dpr ˝Kq}p|ω| ` |λ||s|e´λ}r˝K}q.


Then,


|ΓąpHqpθ, sq ´ ΓąpH 1qpθ, sq| ď ε}H ´H 1}0,N |s|
N


ż 8


0
epλN´λ0qtMφpseλtqdt,


where


M “ }D1Y } ` }D2Y }M1.


Now, notice that by definition of D1, we have that λ P r4λ03 , 2λ0
3 s, then


λN ´ λ0 ă 0 if N ě 2. Under this assumption, we have for all θ, s,


|ΓąpHqpθ, sq ´ ΓąpH 1qpθ, sq| ď ´
εM


λN ´ λ0
}H ´H 1}0,N |s|


N .


If ε is small enough, we have for all θ, s,


|ΓąpHqpθ, sq ´ ΓąpH 1qpθ, sq| ď µ}H ´H 1}0,N |s|
N .


Hence for small enough ε,


}ΓąpHq ´ ΓąpH 1q}0,N ď µ}H ´H 1}0,N ,
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Γą is a contraction. Note that smallness condition for ε depends on N , Bj ,
j “ 0, . . . , N ´ 1, B, ω, λ, Y , and r ˝K. �


Now for any initial guess Wă,0, the sequence pΓąqnpWą,0q in the function
space Dą, will converge pointwise to a function Wą, which is a fixed point
of Γą. By Lemma 6, we know that Wą is pLą´1q times differentiable, with
pLą ´ 1q-th derivative Lipschitz.


It remains to do the error analysis in this case. Notice that


Eąpθ, sq “ pωBθ`sλBsqW
ą,0pθ, sq´


ˆ


0


λ0W
ą,0
2 pθ, sq


˙


´εY ąpWą,0, θ, s, εqφpsq,


along the characteristics, we have


Eąpcptqq “ pωBθ ` se
λtλBsqW


ą,0pcptqq ´


ˆ


0


λ0W
ą,0
2 pcptqq


˙


´ εY ąpWą,0, cptq, εqφpseλtq.


Hence,


ΓąpWą,0qpθ, sq ´Wą,0pθ, sq “


ż 8


0


ˆ


1 0
0 e´λ0t


˙


Eąpcptqqdt.


Based on proof of Lemma 29, we know that }Eą}0,N is bounded, therefore,
for the maximum norm,


}ΓąpWą,0q ´Wą,0} ď
1


λ0 ´ λN
}Eą}0,N |s|


N ,


and then


}Wą´Wą,0} ď
1


1´ µ
}ΓąpWą,0q´Wą,0} ď


1


p1´ µqpλ0 ´ λNq
}Eą}0,N |s|


N .


(6.52)
If we take account of error estimations in (6.18),(6.31), (6.37), and (6.52),


we see that l “ 0 case of (4.4) is proved. Inequalities in (4.4) for l ‰ 0 is
obtained using interpolation inequalities.


6.3. Proof of Theorem 13 and Theorem 14. The proof of Theorem 13


and Theorem 14 are obtained by just considering the functions W j
η as func-


tions of two variables W̃ jpη, θq. We can straightforwardly lift the operators
Γ0, Γ1, and Γj defined in (6.3), (6.25), and (6.35) to operators acting on
functions of two variables. We denote these operators acting on two-variable
functions by Γ̃0, Γ̃1, and Γ̃j , respectively. At the same time, we lift the op-
erator Γą to an operator acting on functions of three variables, denoted as
Γ̃ą.


To prove Theorem 13, given a function W̃ 0pη, θq of the variables η, θ, we
treat η as a parameter and take into account that now, Y and r depend also
on η, in a smooth way.


We use the same strategy as in the proof of Theorem 9. We first show the
propagated bounds, similar to Lemma 19, and then, show that the operator
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is a contraction under a distance given by the C0 norm of the two-variable
functions and the distance on the ω, similar to Lemma 20. The distance
here is quite analogue to the distance defined in (6.5). Then, the desired
result, Theorem 13 follows by an application of Lemma 6.


The key to the propagated bounds is to show that if }W̃ }L`Lip ď B̃0, for


ε ă ε0, we have that the CL`Lip norm of the function components of Γ̃0pW̃ q


is also smaller or equal than B̃0. This proof is rather straightforward and
identical to the proof as before, because if we apply Faá di Bruno formula,
we obtain that the derivatives of order up to L of Γ̃pW̃ 0q, are polynomials


in the derivatives of W̃ 0 of order up to L and the coefficients are just deriva-
tives of Y , r and combinatorial coefficients. Similarly, we can estimate the
Lipschitz constants because upper bounds for the Lipschitz constants satisfy
an analogue of Faá di Bruno formula.


To obtain the proof of the contraction in C0, we just need to observe that
the proof of the contraction in Theorem 9 only uses very few properties of
Y, r. The properties hold uniformly for all η. One can obtain the contraction
in the uniform norm on both variables.


Analogous arguments as above for the operators Γ̃j and Γ̃ą, using similar
methods in Sections 6.2.1, 6.2.2, 6.2.3, complete the proof for Theorem 14.
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