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Abstract. In this short note we present very simple proof of the
famous Cartan homotopy formula


Lvω = divω + ivdω.


The Proof


Let M be a smooth manifold, dimM = m, and let v, ω be a smooth
vector field and a smooth differential k-form respectively.


Our aim is to prove the following Cartan formula


Lvω = divω + ivdω.


Here Lv is the Lie derivative and iv is the interior product.
First we check the formula for each point x ∈M such that v(x) 6= 0.


It is well known [1] that if v(x̃) 6= 0 then in some neighbourhood of the
point x̃ there are local coordinates x = (x1, . . . , xm) such that in these
coordinates the vector field v is presented as follows v = ∂1.


The corresponding flow has the form


gt(x) = (x1 + t, x2, . . . , xm). (0.1)


By linearity of Lv, d, iv it is sufficient to check the Cartan formula for
the monomials of the following two sorts:


1) ω = a(x)dx1 ∧ dxj1 ∧ . . . ∧ dxjk−1 , 1 < j1 < . . . < jk−1 ≤ m;
and
2) γ = b(x)dxl1 ∧ . . . ∧ dxlk , 1 < l1 < . . . < lk ≤ m.
Consider the case 1); the case two 2) is carried out similarly.
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By direct calculation we obtain


ivω = adxj1 ∧ . . . ∧ dxjk−1 , divω =
m∑
s=1


∂a


∂xs
dxs ∧ dxj1 ∧ . . . ∧ dxjk−1 ;


and


dω =
m∑
r=2


∂a


∂xr
dxr ∧ dx1 ∧ dxj1 ∧ . . . ∧ dxjk−1 ;


ivdω = −
m∑
r=2


∂a


∂xr
dxr ∧ dxj1 ∧ . . . ∧ dxjk−1 .


On the other hand by formula (0.1) it follows that


Lvω =
d


dt


∣∣∣
t=0
a(x1 + t, x2, . . . , xm)d(x1 + t) ∧ dxj1 ∧ . . . ∧ dxjk−1


=
∂a


∂x1
dx1 ∧ dxj1 ∧ . . . ∧ dxjk−1 .


This proves the Cartan formula at each point of the set


F = {x ∈M | v(x) 6= 0}.
This set is open. By continuity, the Cartan formula remains valid in
the closure F .


The set N = M\F is open and v |N= 0. This implies that in any
local coordinates all partial derivatives of v vanish at each point of N .
Consequently, on the set N the Cartan formula takes the trivial form:


0 = 0.


The Cartan formula is proved.
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