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SPECTRAL OPTIMIZATION FOR ROBIN LAPLACIAN
IN DOMAINS WITHOUT CUT LOCI


PAVEL EXNER AND VLADIMIR LOTOREICHIK


Dedicated to the memory of our friend and colleague Hagen Neidhardt


ABSTRACT. In this paper we deal with spectral optimization for the Robin Lapla-
cian on a family of planar domains without cut loci, namely a fixed-width strip
built over a smooth closed curve and the exterior of a convex set with a smooth
boundary. We show that if the curve length is kept fixed, the first eigenvalue
referring to the fixed-width strip is for any value of the Robin parameter maxi-
mized by a circular annulus. Furthermore, we prove that the second eigenvalue
in the exterior of a convex domain Ω corresponding to a negative Robin param-
eter does not exceed the analogous quantity for a disk whose boundary has a
curvature larger or equal to the maximum of that for ∂Ω.


1. Introduction


1.1. Motivation and the problem description. Relations between geometry and spec-
tral properties have a rather long history. They are a trademark topic of mathemat-
ical physics at least since the celebrated Faber and Krahn proof [F23, K24] of Lord
Rayleigh’s conjecture [R1877] about the shape of the drum that produces the lowest
tone. While the original interest focused on problems with Dirichlet or Neumann
boundary conditions, more recently the attention shifted to mixed boundary condi-
tions. Spectral optimization for the Robin Laplacian was the topic of a number of
studies in the last few years and it still offers many challenging open problems, see
the reviews [BFK17, L19] and the references therein.


It has to be said that spectral optimization can mean both the upper and lower
bounds. While in the mentioned Faber and Krahn result the circle minimizes the
principal eigenvalue, the Dirichlet Laplacian on non-simply connected domains can
exhibit the opposite effect when the full symmetry makes this eigenvalue maximal
[EHL99, HKK01]. Moreover, this effect is robust, we note that a similar result holds
for a family of singular Schrödinger operators with an attractive interaction sup-
ported by a closed planar curve [EHL06].


In the present paper we are going to deal with the optimization of the first and the
second Robin eigenvalues on two particular classes of planar domains whose mul-
tiple connectedness follows from the absence of cut loci, specifically of loop-shaped
curved strips and of exteriors of convex sets. In the first case, we are going to prove
that the lowest Robin eigenvalue on such a curved strip of a fixed length of the inner
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boundary and a fixed width is maximized by that of the annulus. This result can be
regarded as an extension of the indicated property of the Dirichlet Laplacian [EHL99,
Thm 1a]. We stress that no restrictions are imposed on the Robin coefficient, it can be
negative as well as positive, in other words, the strip boundary can be both repulsive
and attractive. The proof of the claim relies on the min-max principle, an appropriate
test function is constructed via transplantation of the ground state for the annular
strip using the method of parallel coordinates. The width of the curved strip is re-
stricted by the requirement that the cut locus set is empty which makes it possible to
choose parallel coordinates well defined everywhere.


Our second result concerns an optimization of the second Robin eigenvalue in the
exterior of a convex set under the assumption that the curvature κ of the boundary
is non-negative and bounded from above by a fixed constant κ◦ > 0. The exte-
rior of a disk with the boundary curvature κ◦, in other words, with the radius κ−1


◦ ,
turns out be the unique maximizer. This new result complements the optimization
of the lowest Robin eigenvalue in the exterior of a bounded set considered recently
in [KL17a, KL17b]. It is not yet clear whether the stated condition on the curvature
can be replaced by a more standard perimeter-type constraint. In contrast to the
previous case, the Robin coefficient is now assumed to be negative as otherwise the
spectrum of the respective Laplacian is purely essential and coincides with [0,∞),
making thus the spectral optimization question void. In the proof, we again make
the advantage of the fact that the parallel coordinates are globally well defined. We
apply the min-max principle to the span of the two transplanted eigenfunctions of
the Robin Laplacian on the exterior of the disk corresponding to its first and sec-
ond eigenvalues, respectively. Since the eigenfunction corresponding to the second
eigenvalue is not radial, its transplantation is more involved and contains an addi-
tional geometric insight.


In the setting of bounded domains, it has been proved that the disk is a maxi-
mizer of the second Robin eigenvalue having a fixed area [FL18a] or a fixed perimeter
[FL18b], provided that the negative boundary parameter lies in a specific interval. An
analogous result has recently been proved in [GL19] for the third Robin eigenvalue
with the maximizer being the union of two disks and with the negative boundary
parameter again lying in a specific interval. In this context, we would like to empha-
size that the optimization result for the second Robin eigenvalue in the present paper
holds for all negative values of the boundary parameters.


1.2. Geometric setting. Since the domain geometry is crucial in our results, let us
first recall the necessary notions and state the assumptions we are going to use.


Hypothesis 1. Let a C∞-smooth curve Σ ⊂ R2 be the boundary of a bounded, simply
connected domain Ω ⊂ R2. Let a circle C ⊂ R2 be the boundary of a disk B ⊂ R2. We denote
by L := |Σ| and L◦ := |C| the lengths of Σ and C, respectively.


The mapping σ : [0, L]→ R2 provides the natural (counter-clockwise) parametriza-
tion of Σ with the tangential vector τ(s) := σ′(s) satisfying |τ(s)| = 1. We denote by
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κ : [0, L]→ R the signed curvature of Σ; the convention we adopt is that κ ≥ 0 holds
for convex Ω. Recall the Frenet formula


τ ′(s) = −κν(s),


where ν is the outer unit normal vector to the domain Ω.
The object of our interest will be the curved strip built over Σ with the thickness


d ∈ (0,∞], that is, the set


(1.1) Ωc
d :=


{
x ∈ R2 \ Ω: dist (x,Σ) < d


}
.


The definition includes the unbounded domain Ωc
∞ identified with the exteriorR2\Ω


of Ω for which we will use the shorthand notation Ωc := Ωc
∞. The boundary of Ωc


d is
therefore


∂Ωc
d =


{
Σ if d =∞,
Σ ∪


{
x ∈ R2 \ Ω: dist (x,Σ) = d


}
if d <∞.


In particular, ∂Ωc
d has two components for d < ∞ and, respectively, one component


for d = ∞. If the curvature κ is sign-changing, we set κ− = min{κ, 0}, and assume,
in addition, that d ∈ (0,∞) satisfies the condition


(1.2) d‖κ−‖∞ < 1.


The parallel coordinates (s, t) ∈ [0, L)× (0, d) on Ωc
d [Hart64], alternatively dubbed


Fermi or natural curvilinear, are under the assumption (1.2) everywhere well defined
by the formula Ωc


d 3 x = σ(s) + tν(s). Since our setting is two-dimensional, it is
useful to work with the complexified tangential and normal vectors


(1.3) t(s) = τ1(s) + iτ2(s) and n(s) = ν1(s) + iν2(s).


In this notation, the Frenet formula can be written in the complex form as


(1.4) t′(s) = −κn(s) = −iκt(s).


1.3. The Robin Laplacian on Ωc
d. For an arbitrary value of the coefficient α ∈ R,


which characterizes the strength of the coupling to the boundary, we introduce the
self-adjoint operator Hα,Ωc


d
in the Hilbert space L2(Ωc


d) through its quadratic form


hα,Ωc
d
[u] := ‖∇u‖2L2(Ωc


d;C2) + α‖u|∂Ωc
d
‖2L2(∂Ωc


d), dom hα,Ωc
d


= H1(Ωc
d),


where H1(Ωc
d) is the first-order L2-based Sobolev space on Ωc


d.
If d < ∞ the spectrum of Hα,Ωc


d
is discrete and we denote by {λαk (Ωc


d)}k≥1 its
eigenvalues arranged in the non-decreasing order and repeated with multiplicities
taken into account. The spectral properties of Hα,Ωc corresponding to d = ∞ are
different; we recall them below:


(i) σess(Hα,Ωc) = [0,∞).
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(ii) #σd(Hα,Ωc) ≥ 1 for all α < 0.


(iii) σd(Hα,Ωc) = ∅ for all α ≥ 0.


In analogy with the bounded domain case we denote by {λαk (Ωc)}k≥1 the negative
eigenvalues of Hα,Ωc arranged in the ascending order and repeated with the multi-
plicities taken into account. In the min-max spirit, this sequence is conventionally
extended up to an infinite one by repeating the bottom of the essential spectrum
inf σess(Hα,Ωc) = 0 infinitely many times.


1.4. Main results. Let us now state our main results. The first one concerns opti-
mization of λα1 (Ωc


d) on curved strips of a fixed width.


Theorem 1.1. Assume that Hypothesis 1 holds and that L = L◦. Let κ be the curvature of
Σ. The strip-width d ∈ (0,∞] may be arbitrary if κ ≥ 0, while for a sign-changing κ we
assume that condition (1.2) is satisfied. Let the domains Ωc


d and Bc
d be as in (1.1). Then for


the lowest Robin eigenvalues on these domains the inequality


λα1 (Ωc
d) ≤ λα1 (Bc


d)


holds for any α ∈ R.


Let us add a few comments. The above inequality holds trivially in the Neumann
case, α = 0, since we have λ0


1(Ωc
d) = λ0


1(Bc
d) = 0. In the limit α→ +∞ it implies the


respective inequality for the Dirichlet Laplacians providing thus an alternative proof
of Theorem 1a in [EHL99]. Furthermore, if α < 0, κ ≥ 0, and d = ∞, Theorem 1.1
reduces to the first claim of [KL17a, Thm. 1.3]. Note that the topological character
of Ω manifested in the lack of simple connectedness mentioned in the introduction
plays a role again: the annulus is always a maximizer here, even for α > 0, while in
the case of general bounded domains the disk is typically a maximizer for α < 0 and
a minimizer for α > 0 under appropriate geometric constraints, cf. [FK15, AFK17,
BFNT18] in the former case and [Bos86, Dan06] in the latter.


The proof of Theorem 1.1 will rely on the min-max principle with a suitable test
function constructed through the transplantation of the radial ground-state eigen-
function for the annulus using the method of parallel coordinates.


Our second result concerns optimization of λα2 (Ωc) on unbounded exterior do-
mains described above.


Theorem 1.2. Assume that Hypothesis 1 holds. Let κ : [0, L] → R and κ◦ ∈ R+ be the
curvatures of Σ and C, respectively. Assume further that Ω is convex, that is, κ ≥ 0, and
that maxκ ≤ κ◦ holds . Let the domains Ωc and Bc be as in (1.1) with d =∞. Then for the
second Robin eigenvalues on these domains the inequality


(1.5) λα2 (Ωc) ≤ λα2 (Bc)


is valid for any α < 0. If λα2 (Bc) < 0 and the equality in (1.5) holds, the two domains are
congruent, Ω ∼= B.
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The above theorem and monotonicity of λα2 (Bc), with respect to L◦ shown in
Proposition 2.2, below yield the following.


Corollary 1.3. Assume that Hypothesis 1 holds and let κ◦ > 0 be fixed. Then, for all α < 0,


(1.6) max
Ω convex


κ≤κ◦


λα2 (Ωc) = λα2 (Bc),


where the maximum is taken over all convex smooth domains Ω ⊂ R2 whose curvature
satisfies maxκ ≤ κ◦ and where B ⊂ R2 is a disk of the curvature κ◦.


We remark that the inequality (1.5) is nontrivial only if Hα,Bc has more than one
negative eigenvalue. We also emphasize that, in contrast to Theorem 1.1 we have
L 6= L◦ in general, in fact, it is easy to show that L > L◦ holds unless Ω ∼= B. In
order to prove Theorem 1.2, we apply the min-max principle transplanting to Ωc the
span of the two eigenfunctions of Hα,Bc corresponding to the eigenvalues λα1 (Bc) and
λα2 (Bc), respectively. The ground-state is transplanted in a conventional way, how-
ever, the transplantation of the first excited state is a little more involved. We note
that an eigenfunction corresponding to the second Robin eigenvalue on the exterior
of a disk can be written in parallel coordinates on Bc as


v◦(s, t) = φ(t) exp


(
2πi


L◦
s


)
.


Since exp
(


2πi
L◦
s
)


can be interpreted as the complexified tangent vector for B, a natural
way of transplantation of v◦ onto Ωc would be


v?(s, t) = φ(t)t(s),


where t is the complexified tangent vector for Ω defined in (1.3).


2. Preliminaries


2.1. The quadratic form hα,Ωc
d


in parallel coordinates. Our first main tool is the rep-
resentation of the quadratic form hα,Ωc


d
in the parallel coordinates on Ωc


d. Using them,
the inner product in the Hilbert space L2(Ωc


d) can be written as follows,


(u, v)L2(Ωc
d) =


∫ d


0


∫ L


0


u(s, t)v(s, t)
(
1 + κ(s)t


)
ds dt.


It is well known that the gradient in these coordinates is expressed as


∇u =
τ(s)


1 + κ(s)t
∂su+ ν(s)∂tu.


Consequently, the quadratic form hα,Ωc
d


can be written in the parallel coordinates as
(2.1)


hα,Ωc
d
[u]=


∫ d


0


∫ L


0


(
|∂su(s, t)|2


1 + κ(s)t
+ |∂tu(s, t)|2(1 + κ(s)t)


)
ds dt+ α


∫ L


0


|u(s, 0)|2 ds,


dom hα,Ωc
d
=


{
u : Σ× (0, d)→ C :


∫ d


0


∫ L


0


[
|∂su|2


1 + κt
+ (|u|2+|∂tu|2)(1 + κt)


]
ds dt <∞


}
.
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The above representation remains valid for d =∞, provided that Ω is convex.


2.2. Eigenfunctions in the radially symmetric case. We also need properties of the
eigenfunctions corresponding to the first and the second eigenvalue in the radially
symmetric case. They are elementary but we describe them in the next two propo-
sitions, the proof of which are postponed to the appendices, in order to make the
paper self-contained. Let us begin with the ground-state eigenfunction of the Robin
annulus.


Proposition 2.1. Assume that Hypothesis 1 holds. For any fixed d > 0 and any α ∈ R,
or for d = ∞ and any α < 0, the lowest eigenvalue λα1 (Bc


d) of Hα,Bc
d


is simple and the
corresponding eigenfunction can be written in the parallel coordinates on Bc


d as


u◦(s, t) = ψ(t),


with a given real-valued ψ ∈ C∞([0, d]) if d <∞ and with ψ ∈ C∞([0,∞)) satisfying


(2.2)
∫ ∞


0


[
ψ(t)2 + ψ′(t)2](1 + t) dt <∞,


if d =∞.


Consider next the first excited state of the Robin Laplacian in the exterior of a disk.


Proposition 2.2. Assume that Hypothesis 1 holds. Then for any fixed α < 0 such that
#σd(Hα,Bc) > 1, the second eigenvalue λα2 (Bc) < 0 of Hα,Bc has multiplicity two and the
respective eigenfunctions of Hα,Bc can be written in parallel coordinates on Bc as


v±◦ (s, t) = exp


(
±2πi


L◦
s


)
φ(t), s ∈ [0, L◦), t ∈ [0,∞),


with a given real-valued φ ∈ C∞([0,∞)) satisfying the integrability condition


(2.3)
∫ ∞


0


[
φ(t)2 + φ′(t)2](1 + t) dt <∞.


Moreover, λα2 (Bc) is a non-increasing function of L◦.


We remark that the functions ψ and φ in Propositions 2.1 and 2.2 can be explicitly
expressed in terms of Bessel functions, however, this is not essential for our analysis.


3. Proofs of the main results


Now we are going to provide proofs of Theorems 1.1 and 1.2. Recall that the
C∞-smooth curve Σ ⊂ R2 is the boundary of a bounded, simply connected domain
Ω ⊂ R2, and the circle C ⊂ R2 is the boundary of the disk B ⊂ R2. The lengths of Σ


and C are denoted by L and L◦, respectively. The curvature of Σ is denoted by κ and
the curvature of C is a constant κ◦ > 0.
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3.1. Proof of Theorem 1.1. By assumption we have L = L◦ and we fix d > 0 sat-
isfying the additional condition (1.2) in the case that κ is sign-changing. Further-
more, α ∈ R is an arbitrary fixed number. The case d = ∞ is dealt with in [KL17a,
Thm 1.3] and thus we may omit it here. By Proposition 2.1, there exists a function
ψ ∈ C∞([0, d]) such that the ground-state u◦ ∈ C∞(Ωc


d) of Hα,Bc
d


can be written as
u◦(s, t) = ψ(t) in the parallel coordinates on Bc


d. Using it we define the test function
u? ∈ H1(Ωc


d) in the parallel coordinates on the curved strip Ωc
d as follows,


u?(s, t) := ψ(t), s ∈ [0, L], t ∈ [0, d].


Using the representation of hα,Ωc
d


in (2.1), applying the min-max principle and the
total curvature identity


∫ L
0
κ(s)ds = 2π we obtain


λα1 (Ωc
d) ≤


hα,Ωc
d
[u?]


‖u?‖2L2(Ωc
d)


=


∫ d


0


∫ L


0


ψ′(t)2(1 + κ(s)t) ds dt+ α


∫ L


0


[
|ψ(0)|2 + |ψ(d)|2(1 + dκ(s))


]
ds∫ d


0


∫ L


0


ψ(t)2(1 + κ(s)t) ds dt


=


∫ d


0


ψ′(t)2(L+ 2πt) dt+ αL|ψ(0)|2 + α(L+ 2πd)|ψ(d)|2∫ d


0


ψ(t)2(L+ 2πt) dt


=
hα,Bc


d
[u◦]


‖u◦‖2L2(Bc
d)


= λα1 (Bc
d),


which yields the sought claim.


3.2. Proof of Theorem 1.2. In view of the convexity of Ω the curvature of Σ satisfies
κ ≥ 0 and by assumption maxκ ≤ κ◦ holds. Let us exclude the trivial case supposing
that Ω � B. Then we have minκ < κ◦ which implies


(3.1) L =
Lκ◦
κ◦


>


∫ L


0


κ(s) ds


κ◦
=


2π


κ◦
= L◦.


We fix the ‘width’ d = ∞ and the coupling constant α < 0. Without loss of gener-
ality, we may assume that |α| is large enough so that λα2 (Bc) < 0 as otherwise the
inequality (1.5) would trivially hold.


Step 1. Test functions. In view of Propositions 2.1 and 2.2, we can represent the eigen-
functions of Hα,Bc corresponding to its simple first eigenvalue λα1 (Bc) and the second
eigenvalue λα2 (Bc) of multiplicity two in parallel coordinates (s, t) on Bc as


(3.2) u◦(s, t) = ψ(t) and v±◦ (s, t) = exp


(
±2πis


L◦


)
φ(t),
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where ψ, φ ∈ C∞([0,∞)) are real-valued and satisfy the integrability conditions (2.2)
and (2.3), respectively. We introduce test functions u?, v? ∈ H1(Ωc) on Ωc defining
them in terms of the parallel coordinates as


u?(s, t) := ψ(t) and v?(s, t) := t(s)φ(t), s ∈ [0, L], t ∈ [0,∞),


where t(s) is the complexified normal (1.3).


Step 2. Orthogonality. Next, we are going to show that u? and v? are orthogonal in
L2(Ωc). To this aim, we observe that


∫ L


0


t(s) ds =


∫ L


0


(σ′1(s) + iσ′2(s)) ds = σ1(L) + iσ2(L)− σ1(0)− iσ2(0) = 0,


where the fact that Σ is a closed curve was employed. Furthermore, using the Frenet
formula we get


∫ L


0


t(s)κ(s) ds = i


∫ L


0


t′(s) ds = i(t(L)− t(0)) = 0,


where the closedness and smoothness of Σ were taken into account. Combining these
two relations we infer that
(3.3)


(v?, u?)L2(Ωc) =


∫ ∞
0


∫ L


0


ψ(t)φ(t)t(s)(1 + tκ(s)) ds dt


=


∫ ∞
0


∫ L


0


ψ(t)φ(t)t(s) ds dt+


∫ ∞
0


∫ L


0


tψ(t)φ(t)t(s)κ(s) ds dt=0.


At the same time, we have
(3.4)


hα,Ωc [v?,u?]=


∫ ∞
0


∫ L


0


ψ′(t)φ′(t)t(s)(1+tκ(s)) ds dt+αψ(0)φ(0)


∫ L


0


t(s) ds=0.


Step 3. Bounds on the Rayleigh quotients. For a non-trivial function u ∈ H1(Ωc) we
define


Rα,Ωc [u] :=
hα,Ωc [u]


‖u‖2L2(Ωc)


.
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Using (2.1) and the total curvature identity
∫ L


0
κ(s) ds = 2π, the Rayleigh quotient of


the test function u? defined in this way can be expressed as


Rα,Ωc [u?] =


∫ ∞
0


∫ L


0


ψ′(t)2(1 + tκ(s)) ds dt+ αL|ψ(0)|2∫ ∞
0


∫ L


0


ψ(t)2(1 + tκ(s)) ds dt


=


∫ ∞
0


ψ′(t)2(L+ 2πt) dt+ αL|ψ(0)|2∫ ∞
0


ψ(t)2(L+ 2πt) dt


=


∫ ∞
0


ψ′(t)2


(
1 +


2πt


L


)
dt+ α|ψ(0)|2∫ ∞


0


ψ′(t)2


(
1 +


2πt


L


)
dt


.


Furthermore, using the inequalities λα1 (Bc) < 0 and L > L◦, we get the following
estimate


(3.5) Rα,Ωc [u?] ≤


∫ ∞
0


ψ′(t)2


(
1 +


2πt


L◦


)
dt+ α|ψ(0)|2∫ ∞


0


ψ′(t)2


(
1 +


2πt


L◦


)
dt


= Rα,Bc [u◦] = λα1 (Bc).


Making use of (2.1), the total curvature identity and the Frenet formula (1.4), the
Rayleigh quotient corresponding to the test function v? is given by


Rα,Ωc [v?]=


∫ ∞
0


∫ L


0


φ′(t)2(1+tκ(s)) ds dt+


∫ ∞
0


∫ L


0


κ2(s)φ(t)2


1 + tκ(s)
ds dt+αL|φ(0)|2∫ ∞


0


∫ L


0


φ(t)2(1 + tκ(s)) ds dt


=


∫ ∞
0


φ′(t)2(L+ 2πt) dt+


∫ ∞
0


∫ L


0


κ2(s)φ(t)2


1 + tκ(s)
ds dt+αL|φ(0)|2∫ ∞


0


φ(t)2(L+ 2πt) dt
.


Using further the strict monotonicity of the function


R+ 3 x 7→
x2


1 + tx
, t ≥ 0,
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in combination with the inequalities L > L◦, maxκ ≤ κ◦, and minκ < κ◦, we get
for the Rayleigh quotient corresponding to v? the following estimate,


(3.6)


Rα,Ωc [v?] <


∫ ∞
0


φ′(t)2(L+ 2πt) dt+ L


∫ ∞
0


κ2
◦φ(t)2


1 + tκ◦
dt+ αL|φ(0)|2∫ ∞


0


φ(t)2(L+ 2πt) dt


=


∫ ∞
0


φ′(t)2


(
1 +


2πt


L


)
dt+


∫ ∞
0


κ2
◦φ(t)2


1 + tκ◦
dt+ α|φ(0)|2∫ ∞


0


φ(t)2


(
1 +


2πt


L


)
dt


≤


∫ ∞
0


φ′(t)2


(
1 +


2πt


L◦


)
dt+


∫ ∞
0


κ2
◦φ(t)2


1 + tκ◦
dt+ α|φ(0)|2∫ ∞


0


φ(t)2


(
1 +


2πt


L◦


)
dt


= Rα,Bc [v◦] = λα2 (Bc).


Step 4. The min-max principle. Any w? ∈ span {u?, v?} \ {0} can be represented as a
linear combination w? = pu? + qv? with (p, q) ∈ C2


× := C2 \ {(0, 0)}. The following
simple inequality,


(3.7)
a+ b


c+ d
≤ max


{
a


c
,
b


d


}
,


holds obviously for any a, b ∈ R and c, d > 0. Applying the min-max principle, using
the orthogonality relatons (3.3), (3.4), the bounds (3.5), (3.6), and the inequality (3.7)
we get


λα2 (Ωc) ≤ max
(p,q)∈C2


×


hα,Ωc [pu? + qv?]


‖pu? + qv?‖2L2(Ωc)


= max
(p,q)∈C2


×


|p|2hα,Ωc [u?] + |q|2hα,Ωc [v?]


|p|2‖u?‖2L2(Ωc) + |q|2‖v?‖2L2(Ωc)


≤ max {Rα,Ωc [u?],Rα,Ωc [v?]} < λα2 (Bc),
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Appendix A. Proof of Proposition 2.1


The case d = ∞ was dealt with in [KL17a, Sec. 3]. Assume that d < ∞ and let
α ∈ R be arbitrary. For the sake of simplicity and without loss of generality, we also
assume that L◦ = 2π. In this case the curvilinear coordinates (s, t) essentially coin-
cide with the polar coordinates. Using the complete family of orthogonal projections
on L2(Bc


d),


(Πnu)(t) =
1√
2π


eins
∫ 2π


0


u(s, t) e−ins ds, n ∈ Z,
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one can decompose Hα,Bc
d


into an orthogonal sum


Hα,Bc
d


=
⊕
n∈Z


H[n]
α,Bc


d
,


where the self-adjoint fiber operator H[n]
α,Bc


d
acts in the Hilbert space L2((0, d); (1 +


t) dt) and corresponds to the quadratic form (n ∈ Z)


h
[n]
α,Bc


d
[ψ] =


∫ d


0


(
|ψ′(t)|2(1 + t) +


n2|ψ(t)|2


1 + t


)
dt+ α|ψ(0)|2,


dom h
[n]
α,Bc


d
= H1((0, d)).


Clearly the lowest eigenvalue of H[0]
α,Bc


d
is simple and strictly smaller than the lowest


eigenvalues of H[n]
α,Bc


d
with n 6= 0. Thus, the ground-state of Hα,Bc


d
is simple and de-


pends on t variable only. The smoothness of the corresponding eigenfunction follows
from standard elliptic regularity theory.


Appendix B. Proof of Proposition 2.2


Using the complete family of orthogonal projections on L2(Bc)


(Πnu)(t) =
1√
L◦


e
2πins
L◦


∫ L◦


0


u(s, t) e−
2πins
L◦ ds, n ∈ Z,


One can again decompose Hα,Bc into an orthogonal sum


Hα,Bc =
⊕
n∈Z


H[n]
α,Bc ,


where the fiber operators H[n]
α,Bc , n ∈ Z, in the Hilbert space L2(R+; (1 + 2πt


L◦
) dt)


correspond to the quadratic forms


h
[n]
α,Bc [ψ] =


∫ ∞
0


(
|ψ′(t)|2


(
1 +


2πt


L◦


)
+


4π2n2|ψ(t)|2


L◦ + 2πt


)
dt+ α|ψ(0)|2,


dom h
[n]
α,Bc =


{
ψ : R+ → C : ψ,ψ′ ∈ L2(R+;


(
1 + 2πL−1


◦ t
)
dt)
}
.


It is easy to see that H[0]
α,Bc has exactly one negative simple eigenvalue, which corre-


sponds to the ground-state eigenvalue λα1 (Bc) of Hα,Bc . The first excited state eigen-
value λα2 (Bc) corresponds to the lowest eigenvalues of the identical operators H[1]


α,Bc


and H[−1]
α,Bc . Moreover, the smoothness of φ follows from standard elliptic regularity


theory.
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Let B1,B2 be two disks with perimeters L1 and L2, respectively. Assume that
L1 < L2. Then we obtain that


λα2 (Bc
1) = inf


ψ∈C∞0 ([0,∞))


∫ ∞
0


(
|ψ′(t)|2


(
1 +


2π


L1


t


)
+


1


L1


16π2|ψ(t)|2


L1 + 2πt


)
dt+ α|ψ(0)|2∫ ∞


0


|ψ(t)|2
(


1 +
2π


L1


t


)
dt


≥ inf
ψ∈C∞0 ([0,∞))


∫ ∞
0


(
|ψ′(t)|2


(
1 +


2π


L2


t


)
+


1


L2


16π2|ψ(t)|2


L2 + 2πt


)
dt+ α|ψ(0)|2∫ ∞


0


|ψ(t)|2
(


1 +
2π


L2


t


)
dt


= λα2 (Bc
2).


Hence, it follows that λα2 (Bc) is a non-increasing function of its perimeter.
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way, to appear in Canad. J. Math., arXiv:1811.05573.


[HKK01] E. Harrell, P. Kröger, and K. Kurata, On the placement of an obstacle or a well so as to
optimize the fundamental eigenvalue, SIAM J. Math. Anal. 33 (2001), 240–259.


[Hart64] P. Hartman, Geodesic parallel coordinates in the large, Amer. J. Math. 86 (1964), 705–727.







SPECTRAL OPTIMIZATION FOR ROBIN LAPLACIAN 13


[GL19] A. Girouard and R. S. Laugesen, Robin spectrum: two disks maximize the third eigen-
value, arXiv:1907.13173.


[K24] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann.
94 (1924), 97–100.
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